Please wait a minute...
文章检索
复杂系统与复杂性科学  2023, Vol. 20 Issue (2): 10-19    DOI: 10.13306/j.1672-3813.2023.02.002
  本期目录 | 过刊浏览 | 高级检索 |
基于分包的混合朴素贝叶斯链路预测模型
曾茜, 韩华, 李秋晖, 李巧丽
武汉理工大学理学院,武汉 430070
Package-based Hybrid Naive Bayesian Model
ZENG Xi, HAN Hua, LI Qiuhui, LI Qiaoli
School of Science, Wuhan University of Technology, Wuhan 430070, China
全文: PDF(2242 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 隐朴素贝叶斯模型(HNB)和树增强朴素贝叶斯模型(TAN)通过挖掘共邻节点之间的内在关联缓解局部朴素贝叶斯模型(LNB)的强独立性假设,却忽略了真实网络中同时存在关联紧密的节点和相对独立的节点。在此基础上设计一种分包准则,将共邻节点划分为关联共邻节点和独立共邻节点,然后分别对HNB和TAN做分包改进,提出基于分包的混合朴素贝叶斯模型。在平均共邻节点数高的FWFW网络上,分包后HNB和TAN模型与原模型相比AUC值分别提升12%和11.6%。实验结果表明,所提方法能有效提升链路预测性能,并且具有良好的鲁棒性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾茜
韩华
李秋晖
李巧丽
关键词 复杂网络链路预测分包混合朴素贝叶斯    
Abstract:Hidden Naive Bayesian Model (HNB) and Tree Augmented Naive Bayesian Model (TAN) alleviate the strong independence assumption of Local Naive Bayesian Model (LNB) by mining the intrinsic associations between co-neighboring nodes, but ignore that there are both closely correlated nodes and relatively independent nodes in the real network. On this basis, a package criterion is designed, which divides the co-neighboring nodes into correlated co-neighboring nodes and independent co-neighboring nodes according to the degree of association. Then, packaging HNB and TAN respectively, so that the packaged-based hybrid naive Bayesian models are obtained. On FWFW networks with high average number of co-neighbors, the AUC values of the HNB and TAN models after packaging are increased by 12% and 11.6%, respectively. The experimental results show that the proposed method can effectively improve the link prediction performance and has good robustness.
Key wordscomplex network    link prediction    packaged    hybrid naive Bayesian model
收稿日期: 2022-02-21      出版日期: 2023-07-21
ZTFLH:  TP393  
基金资助:国家自然科学基金(12071364);国家自然科学基金青年科学基金(11701435)
通讯作者: 韩华(1975-),女,山东烟台人,博士,教授,主要研究方向为复杂性分析与评价、经济控制与决策。   
作者简介: 曾茜(1997-),女,湖北武汉人,硕士研究生,主要研究方向为链路预测、复杂网络分析。
引用本文:   
曾茜, 韩华, 李秋晖, 李巧丽. 基于分包的混合朴素贝叶斯链路预测模型[J]. 复杂系统与复杂性科学, 2023, 20(2): 10-19.
ZENG Xi, HAN Hua, LI Qiuhui, LI Qiaoli. Package-based Hybrid Naive Bayesian Model. Complex Systems and Complexity Science, 2023, 20(2): 10-19.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2023.02.002      或      https://fzkx.qdu.edu.cn/CN/Y2023/V20/I2/10
[1] BATOOL K, NIAZI M A. Modeling the internet of things: a hybrid modeling approach using complex networks and agent-based models[J]. Complex Adaptive Systems Modeling, 2017, 5(1): 1-19.
[2] HUANG Q J, ZHANG X, WANG X J, et al. The degree-related clustering coefficient and its application to link prediction[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 454: 24-33.
[3] YANG Y, LICHTENWALTER R N, CHAWLA N V. Evaluating link prediction methods[J]. Knowledge and Information Systems, 2015, 45(3): 751-782.
[4] LI S B, HUANG J W, ZHANG Z G, et al. Similarity-based future common neighbors model for link prediction in complex networks[J]. Scientific Reports, 2018, 8(1): 1-11.
[5] MLIKA Z, GOONEWARDENA M, AJIB W, et al. User-base-station association in HetSNets: complexity and efficient algorithms[J]. IEEE Trans on Vehicular Technology, 2017, 66(2): 1484-1495.
[6] ZHANG L L, LI J, ZHANG Q L, et al. Domain knowledge-based link prediction in customer-product bipartite graph for product recommendation[J]. International Journal of Information Technology & Decision Making, 2019, 18(1): 311-338.
[7] LÜ L Y, ZHOU T. Link Prediction in complex networks: a survey[J]. Physica A: Statistical Mechanics and Its Applications,2011, 390(6): 1150-1170.
[8] LORRAIN F, WHITE H C. Structural equivalence of individuals in social networks[J]. The Journal of Mathematical Sociology, 1971, 1(1): 49-80.
[9] ADAMIC L A, ADAR E. Friends and neighbors on the Web[J]. Social Networks, 2003, 25(3): 211-230.
[10] ZHOU T, LÜ L Y, ZHANG Y C. Predicting missing links via local information[J]. The European Physical Journal B, 2009, 71(4): 623-630.
[11] 郁湧, 王莹港, 罗正国, 等. 基于聚类系数和节点中心性的链路预测算法[J]. 清华大学学报(自然科学版), 2022, 62(1): 98-104.
YU Y, WANG Y G, LUO Z G, et al. Link prediction algorithm based on clustering coefficient and node centrality[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(1): 98-104.
[12] KLEIN D J, RANDI M. Resistance distance[J]. Journal of Mathematical Chemistry, 1993, 12(1): 81-95.
[13] BRIN S, PAGE L. The anatomy of a large-scale hypertextual web search engine[J]. Computer Networks and ISDN Systems, 1998, 30(1): 107-117.
[14] 吕亚楠, 韩华, 贾承丰, 等. 基于有偏向的重启随机游走链路预测算法[J]. 复杂系统与复杂性科学, 2018, 15(4): 17-24.
LÜ Y N, HAN H, JIA C F, et al. Link prediction algorithm based on biased random walk with restart[J]. Complex Systems and Complexity Science, 2018, 15(4): 17-24.
[15] KATZ L. A new status index derived from sociometric analysis[J]. Psychometrika, 1953, 18(1): 39-43.
[16] LIU Z, ZHANG Q M, Lü L Y, et al. Link prediction in complex networks: a local naive Bayes model[J]. Europhysics Letters, 2011, 96(4): 48007.
[17] 伍杰华, 朱岸青, 蔡雪莲, 等. 基于隐朴素贝叶斯模型的社会关系推荐[J]. 计算机应用研究, 2014, 31(5): 1381-1384.
WU J H, ZHU A Q, CAI X L, et al. Hidden naÏve Bayesian model for social relation recommendation[J]. Application Research of Computer, 2014, 31(5): 1381-1384.
[18] WU J. A generalized tree augmented naive Bayes link prediction model[J]. Journal of computational science, 2018, 27: 206-217.
[19] HEYMANS J J, ULANOWIC R E, BONDAVALLI C. Network analysis of the South Florida Everglades graminoid marshes and comparison with nearby cypress ecosystems[J]. Ecological Modelling, 2002, 149(2): 5-23.
[20] ALMUNIA J, BASTERRETXEA G, ARISTEGUI J, et al. Benthic-pelagic switching in a coastal subtropical lagoon[J]. Estuarine Coastal and Shelf Science, 1999, 49(3): 363-384.
[21] BATAGELJ V, MRVAR A. Pajek-program for large network analysis[J]. Connections, 1998, 21(2): 47-57.
[22] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440-442.
[23] ADAMIC L A, GLANCE N. The political blogosphere and the 2004 US election: divided they blog[C]// Proceedings of the 3rd International Workshop on Link Discovery. New York: ACM Press, 2005: 36-43.
[24] GUIMERA R, DANOD L, DIAZ-GUILEAR A, et al. Self-similar community structure in a network of human interactions[J]. Physical Review E, 2003, 68(6): 65-73.
[25] ZENG G P, ZENG E. On the three-way equivalence of AUC in credit scoring with tied scores[J]. Communications in Statistics-Theory and Methods, 2019, 48(7): 1635-1650.
[26] WU Z H, LIN Y F, ZHAO Y J, et al. Improving local clustering based top-L link prediction methods via asymmetric link clustering information[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 492: 1859-1874.
[1] 任翠萍, 杨明翔, 张裕铭, 谢逢洁. 快递安全事故致因网络构建及结构特性分析[J]. 复杂系统与复杂性科学, 2023, 20(2): 74-80.
[2] 李巧丽, 韩华, 李秋晖, 曾茜. 基于最优路径相似度传输矩阵的链路预测方法[J]. 复杂系统与复杂性科学, 2023, 20(1): 9-17.
[3] 路冠平, 李江平. 基于复杂网络演化模型的新冠危机对经济的冲击研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 34-40.
[4] 林兆丰, 李树彬, 孔祥科. 地铁建设对公交系统鲁棒性的影响[J]. 复杂系统与复杂性科学, 2023, 20(1): 66-73.
[5] 郭明健, 高岩. 基于复杂网络理论的电力网络抗毁性分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 1-6.
[6] 王淑良, 陈辰, 张建华, 栾声扬. 基于复杂网络的关联公共交通系统韧性分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 47-54.
[7] 张健, 宋志刚, 张雨. 基于节点重要性的建筑群火灾蔓延高危建筑的确定方法[J]. 复杂系统与复杂性科学, 2022, 19(3): 66-73.
[8] 肖瑶, 李守伟, 王怡涵. FPGA芯片产业链及知识转移网络特征分析[J]. 复杂系统与复杂性科学, 2022, 19(3): 20-26.
[9] 肖琴, 罗帆. 基于复杂网络的通用航空安全监管演化博弈研究[J]. 复杂系统与复杂性科学, 2022, 19(3): 33-43.
[10] 吴俊, 邓烨, 王志刚, 谭索怡, 李亚鹏. 复杂网络瓦解问题研究进展与展望[J]. 复杂系统与复杂性科学, 2022, 19(3): 1-13.
[11] 董晓娟, 安海岗, 都沁军, 董志良, 陆刚. 废铜资源全球贸易网络演化特征与响应策略研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 104-110.
[12] 马媛媛, 韩华. 基于有效距离的复杂网络节点影响力度量方法[J]. 复杂系统与复杂性科学, 2022, 19(1): 12-19.
[13] 赵军产, 王少薇, 陆君安, 王敬童. 疫情背景下全球股市网络的抗毁性及预警研究[J]. 复杂系统与复杂性科学, 2022, 19(1): 52-59.
[14] 翁克瑞, 沈卉, 侯俊东. 确定性社会影响力竞争扩散问题研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 21-29.
[15] 张芹, 郭进利. 基于复杂网络理论的质量管理分析[J]. 复杂系统与复杂性科学, 2021, 18(4): 43-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed