Please wait a minute...
文章检索
复杂系统与复杂性科学  2023, Vol. 20 Issue (1): 66-73    DOI: 10.13306/j.1672-3813.2023.01.009
  本期目录 | 过刊浏览 | 高级检索 |
地铁建设对公交系统鲁棒性的影响
林兆丰1, 李树彬1,2, 孔祥科1
1.山东建筑大学交通工程学院,济南 250101;
2.山东警察学院交通管理工程系,济南 250014
The Influence of Subway Construction on the Robustness of Public Transportation System
LIN Zhaofeng1, LI Shubin1,2, KONG Xiangke1
1. School of Transportation Engineering, Shandong Jianzhu University, Ji'nan 250101, China;
2. Department of Traffic Management Engineering, Shandong Police College, Ji'nan 250014, China
全文: PDF(2400 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为提高城市公交系统的鲁棒性,制定了基于换乘的加边策略。以济南市公交地铁复合网络为例,研究了网络的特性参数和鲁棒性,并提出基于换乘的加边策略提高网络鲁棒性。研究表明:复合网络具有小世界和无标度网络特性;网络在蓄意攻击下比随机攻击更具脆弱性;在介数攻击下,高度加边策略对网络鲁棒性提升较为显著,使网络瘫痪时被攻击站点比例提升50.46%;在随机攻击和度攻击下,高介数加边策略对网络鲁棒性提升较为显著,使被攻击站点比例分别提升23.35%和39.81%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林兆丰
李树彬
孔祥科
关键词 复杂网络公交地铁复合网络鲁棒性分析加边策略    
Abstract:To improve the robustness of urban public transport system, an edge adding strategy based on transfer is formulated. Take the bus-subway composite network in Jinan as an example, the characteristic parameters and robustness of the network are studied, and an edge adding strategy based on transfer is proposed to improve the network robustness. The research shows that the composite network has the characteristics of small world and scale-free network; The network is more vulnerable than random attack under intentional attack; The network robustness is improved significantly by the high-degree edge addition strategy under betweenness attacks, which increases the proportion of attacked stations by 50.46% when the network is paralyzed; The network robustness is improved significantly by the high-betweenness edge addition strategy under random attacks and degree attacks, which increases the proportion of attacked stations by 23.35% and 39.81% respectively.
Key wordscomplex network    bus-subway composite network    robustness analysis    edge adding strategy
收稿日期: 2021-09-03      出版日期: 2023-04-19
ZTFLH:  U121  
基金资助:国家自然科学基金(71871130,71771019,71971125);山东省公安厅科技服务项目(SDGP370000000202102003878,SDGP3700000002021 02003700)
通讯作者: 李树彬(1977),男,山东聊城人,博士,教授,主要研究方向为交通流理论、复杂网络研究、智能交通系统。   
作者简介: 林兆丰(1998),男,福建漳州人,硕士研究生,主要研究方向为复杂网络研究、智能交通系统。
引用本文:   
林兆丰, 李树彬, 孔祥科. 地铁建设对公交系统鲁棒性的影响[J]. 复杂系统与复杂性科学, 2023, 20(1): 66-73.
LIN Zhaofeng, LI Shubin, KONG Xiangke. The Influence of Subway Construction on the Robustness of Public Transportation System. Complex Systems and Complexity Science, 2023, 20(1): 66-73.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2023.01.009      或      https://fzkx.qdu.edu.cn/CN/Y2023/V20/I1/66
[1] CAO N, CAO H Q. Exploring the robustness of urban bus network: a case from Southern China[J]. Chinese Journal of Physics, 2020, 65(1):389397.
[2] LI X H, GUO J Y, GAO C, et al. Network-based transportation system analysis: a case study in a mountain city[J]. Chaos, Solitons and Fractals: the Interdisciplinary Journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, 2018, 107(1):256265.
[3] HUANG A L, ZHANG H M, GUAN W, et al. Cascading failures in weighted complex networks of transit systems based on coupled map lattices[J]. Mathematical Problems in Engineering, 2015(1):116.
[4] MA F, LIU F, YUEN K F, et al. Cascading failures and vulnerability evolution in bus-metro complex bilayer networks under rainstorm weather conditions[J]. International Journal of Environmental Research and Public Health, 2019, 16(3):329329.
[5] 张琳, 陆建, 雷达. 基于复杂网络和空间信息嵌入的常规公交地铁复合网络脆弱性分析[J]. 东南大学学报(自然科学版), 2019, 49(4):773780.
ZHANG L, LU J, LEI D. Vulnerability analysis of bus-metro composite network based on complex network and spatial information embedding[J]. Journal of Southeast University(Natural Science Edition), 2019, 49(4):773780.
[6] 宋英华, 李玉枝, 霍非舟, 等. 城区内涝条件下城市公交地铁双层交通网络的脆弱性分析[J]. 安全与环境工程, 2021, 28(2):114120.
SONG Y H, LI Y Z, HUO F Z, et al. Vulnerability of two-layer traffic network of bus and subwayunder waterlogging condition based on complex network theory[J]. Safety and Environmental Engineering, 2021, 28(2):114120.
[7] LIU Z Z, CHEN H, LIU E Z, et al. Evaluating the dynamic resilience of the multi-mode public transit network for sustainable transport[J]. Journal of Cleaner Production, 2022, 348(1):131350.
[8] ZHANG D M, DU F, HUANG H W, et al. Resiliency assessment of urban rail transit networks: Shanghai metro as an example[J]. Safety Science, 2018, 106(1):230243.
[9] 王非. 基于复杂网络的公交线网特性分析与优化研究[D]. 北京: 北京交通大学, 2020.
WANG F. Research on the characteristics analysis and optimization of transit transportation network based on complex network theory[D]. Beijing: Beijing Jiaotong University, 2020.
[10] 赖强, 张宏昊, 王徐盱. 基于复杂网络理论的城市公交网络鲁棒性分析与优化[J]. 计算机工程与应用, 2022, 58(10):249254.
LAI Q, ZHANG H H, WANG X X. Robustness analysis and optimization of urban public transport network based on complex network theory[J]. Computer Engineering and Applications, 2022, 58(10):249254.
[11] 刘美玲. 基于复杂网络理论的我国高速铁路网络抗毁性研究[D]. 北京: 北京交通大学,2019.
LIU M L. Invulnerability research of China high-speed railway network based on complex network theory[D]. Beijing: Beijing Jiaotong University, 2019.
[12] 鲍登, 高超, 张自力. 基于复杂网络的公交地铁复合网络鲁棒性分析[J].西南师范大学学报(自然科学版), 2017, 42(5):2227.
BAO D, GAO C, ZHANG Z L. Analysis robustness of bus and subway interdependent network based on complex network theory[J]. Journal of Southwest China Normal University(Natural Science Edition), 2017, 42(5): 2227.
[13] ZHANG L, WEN H Y, LU J, et al. Exploring cascading reliability of multi-modal public transit network based on complex networks[J]. Reliability Engineering & System Safety, 2022, 221(1):108367.
[14] 沈犁, 张殿业, 向阳, 等. 城市地铁—公交复合网络抗毁性与级联失效仿真[J]. 西南交通大学学报, 2018, 53(1):156163,196.
SHEN L, ZHANG D Y, XIANG Y, et al. Simulation on survivability and cascading failure propagation of urban subway-bus compound network[J]. Journal of Southwest Jiaotong University, 2018, 53(1):156163,196.
[15] 曲迎春, 徐仲之, 龚航,等. 城市轨道交通网络脆弱性分析[J]. 铁道科学与工程学报, 2016, 13(11):22762283.
QU Y C, XU Z Z, GONG H, et al. Vulnerability analysis of urban rail transit networks[J]. Journal of Railway Science and Engineering, 2016, 13(11):22762283.
[16] BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509512.
[17] WATTS D J, STROGATZ S H. Collective dynamics of small-world networks[J]. Nature, 1998, 393(6684):440442.
[18] 刘涤尘, 冀星沛, 陈果, 等. 基于复杂网络理论的电力通信网加边保护策略[J]. 电力自动化设备, 2016, 36(10):121126.
LIU D C, JI X P, CHEN G, et al. Link addition strategy based on complex network theory for power communication network[J]. Electric Power Automation Equipment, 2016, 36(10):121126.
[19] 张洁. 基于复杂网络理论的电力通信网扩容保护策略研究[D]. 北京: 华北电力大学(北京), 2019.
ZHANG J. Research on capacity expansion and protection strategy of power communication network based on complex network[D]. Beijing: North China Electric Power University (Beijing), 2019.
[20] 赵焱鑫, 李黎, 王小明. 复杂网络加边扩容策略研究[J]. 计算机应用研究, 2015, 32(6):18391841.
ZHAO Y X, LI L, WANG X M. Effective strategy of adding links for maximizing traffic capacity of complex networks[J]. Application Research of Computers, 2015, 32(6): 18391841.
[1] 李巧丽, 韩华, 李秋晖, 曾茜. 基于最优路径相似度传输矩阵的链路预测方法[J]. 复杂系统与复杂性科学, 2023, 20(1): 9-17.
[2] 路冠平, 李江平. 基于复杂网络演化模型的新冠危机对经济的冲击研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 34-40.
[3] 郭明健, 高岩. 基于复杂网络理论的电力网络抗毁性分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 1-6.
[4] 王淑良, 陈辰, 张建华, 栾声扬. 基于复杂网络的关联公共交通系统韧性分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 47-54.
[5] 吴俊, 邓烨, 王志刚, 谭索怡, 李亚鹏. 复杂网络瓦解问题研究进展与展望[J]. 复杂系统与复杂性科学, 2022, 19(3): 1-13.
[6] 肖瑶, 李守伟, 王怡涵. FPGA芯片产业链及知识转移网络特征分析[J]. 复杂系统与复杂性科学, 2022, 19(3): 20-26.
[7] 肖琴, 罗帆. 基于复杂网络的通用航空安全监管演化博弈研究[J]. 复杂系统与复杂性科学, 2022, 19(3): 33-43.
[8] 张健, 宋志刚, 张雨. 基于节点重要性的建筑群火灾蔓延高危建筑的确定方法[J]. 复杂系统与复杂性科学, 2022, 19(3): 66-73.
[9] 董晓娟, 安海岗, 都沁军, 董志良, 陆刚. 废铜资源全球贸易网络演化特征与响应策略研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 104-110.
[10] 马媛媛, 韩华. 基于有效距离的复杂网络节点影响力度量方法[J]. 复杂系统与复杂性科学, 2022, 19(1): 12-19.
[11] 赵军产, 王少薇, 陆君安, 王敬童. 疫情背景下全球股市网络的抗毁性及预警研究[J]. 复杂系统与复杂性科学, 2022, 19(1): 52-59.
[12] 翁克瑞, 沈卉, 侯俊东. 确定性社会影响力竞争扩散问题研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 21-29.
[13] 张芹, 郭进利. 基于复杂网络理论的质量管理分析[J]. 复杂系统与复杂性科学, 2021, 18(4): 43-49.
[14] 蒋培祥, 董志良, 张翠芝, 张亦池. 常规能源国际贸易网络演化特征研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 66-73.
[15] 公翠娟, 宾晟, 孙更新. 基于多种社交关系的概率矩阵分解推荐算法[J]. 复杂系统与复杂性科学, 2021, 18(1): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed