Please wait a minute...
文章检索
复杂系统与复杂性科学  2022, Vol. 19 Issue (4): 47-54    DOI: 10.13306/j.1672-3813.2022.04.007
  本期目录 | 过刊浏览 | 高级检索 |
基于复杂网络的关联公共交通系统韧性分析
王淑良, 陈辰, 张建华, 栾声扬
江苏师范大学电气工程及自动化学院,江苏 徐州 221116
Resilience Analysis of Public Interdependent Transport System Based on Complex Network
WANG Shuliang, CHEN Chen, ZHANG Jianhua, LUAN Shengyang
School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou 221116, China
全文: PDF(2435 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为保证城市公共交通系统的正常运行,对其拓扑结构及韧性进行研究。依据城市公交与地铁之间的耦合距离,建立相互依赖的公共交通网络模型,通过深度学习对耦合网络的拓扑属性进行识别;结合熵权法与最优理想解距法提出节点综合重要性指标,根据节点重要性对节点进行择优恢复,对比不同恢复策略下的网络韧性。以武汉市公共交通网络为例,验证了该方法的适用性和准确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王淑良
陈辰
张建华
栾声扬
关键词 公共交通系统复杂网络深度学习韧性    
Abstract:The topological characteristics and resilience analysis of public transportation systems are of great significance in urban management to ensure its safe and sustainable operation. This paper constructs a bus-metro interdependent network model based on the passenger transfer relationship and uses deep learning to identify their network topology attributes. A comprehensive importance indicator of the nodes is established by entropy weight-technique for order preference by similarity to ideal solution (EWM-TOPSIS), and the resilience of the network under different recovery strategies are analyzed. In order to verify the applicability and accuracy of the method, this study takes Wuhan's public transportation network as an example, which has practical guiding significance for the post-disaster recovery and operation management of the urban public transportation system.
Key wordspublic transportation system    complex network    deep learning    resilience
收稿日期: 2021-08-28      出版日期: 2023-01-09
ZTFLH:  X913.4  
基金资助:国家自然科学基金(61801197,61503166)
通讯作者: 张建华(1980),山东临沂人,博士,副教授,主要研究方向为交通网络鲁棒性。   
作者简介: 王淑良(1981),山东临沂人,博士,教授,主要研究方向为网络鲁棒性。
引用本文:   
王淑良, 陈辰, 张建华, 栾声扬. 基于复杂网络的关联公共交通系统韧性分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 47-54.
WANG Shuliang, CHEN Chen, ZHANG Jianhua, LUAN Shengyang. Resilience Analysis of Public Interdependent Transport System Based on Complex Network. Complex Systems and Complexity Science, 2022, 19(4): 47-54.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2022.04.007      或      https://fzkx.qdu.edu.cn/CN/Y2022/V19/I4/47
[1] 上海申通地铁集团有限公司. 上海申通地铁集团有限公司2016年度社会责任报告[R]. 上海:上海申通地铁集团有限公司, 2016.
SHANGHAI SHENTONG METRO CO, LTD. Shanghai shentong metro group co ltd 2016 social responsibility report[R]. Shanghai: Shanghai Shentong Metro Co Ltd, 2016.
[2] 胡一竑, 吴勤旻, 朱道立. 城市道路网络的拓扑性质和脆弱性分析[J]. 复杂系统与复杂性科学, 2009, 6(3):6976.
HU Y H, WU Q M, ZHU D L. Topological properties and vulnerability analysis of spatial urban street networks[J]. Complex Systems and Complexity Science, 2009, 6(3):6976.
[3] SARIGÜL M, OZYILDIRIM B M, AVCI M. Differential convolutional neural network[J]. Neural Networks, 2019, 116(4): 279287.
[4] 徐开俊, 吴佳益, 杨泳, 等. 中国航线网络结构的多层性分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 3946.
XU K J, WU J Y, YANG Y, et al. Multilayered analysis of Chinese airline network structure[J]. Complex Systems and Complexity Science, 2020, 17(2): 3946.
[5] DONG G, YAO Q, WANG F, et al. Percolation on coupled networks with multiple effective dependency links[J]. Chaos, 2021, 31(3):033152.
[6] BULDYREV S V, PARSHANI R, PAUL G, et al. Catastrophic cascade of failures in interdependent networks[J]. Nature, 2010, 464(7291): 10251028.
[7] REIS S D S, HU Y, BABINO A, et al. Avoiding catastrophic failure in correlated networks of networks[J]. Nature Physics, 2014, 10(10): 762767.
[8] MATTSSON L G, JENELIUS E. Vulnerability and resilience of transport systems-a discussion of recent research[J]. Transportation Research Part A: Policy and Practice, 2015, 81: 1634.
[9] FANG Y P, SANSAVINI G. Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience[J]. Reliability Engineering and System Safety, 2019, 185:111.
[10] GONG M G, MA L J, CAI Q, et al. Enhancing robustness of coupled networks under targeted recoveries[J]. Scientific Reports, 2015, 5: 8439.
[11] 周丽娜, 李发旭, 巩云超, 等. 基于 K-shell 的超网络关键节点识别方法[J]. 复杂系统与复杂性科学, 2021, 18(3): 1522.
ZHOU L N, LI F X, GONG Y C, et al. Identification methods of vital nodes based on K-shell in hypernetworks[J]. Complex Systems and Complexity Science, 2021, 18(3): 1522.
[12] ZHAO L J, LI H Y, LI M C, et al. Location selection of intra-city distribution hubs in the metro-integrated logistics system[J]. Tunnelling and Underground Space Technology, 2018, 80(6): 246256.
[13] PENG P, YANG Y, LU F, et al. Modelling the competitiveness of the ports along the maritime silk road with big data[J]. Transportation Research Part A: Policy and Practice, 2018, 118: 852867.
[14] YAN X L, CUI Y P, NI S J. Identifying influential spreaders in complex networks based on entropy weight method and gravity law[J]. Chinese Physics B, 2020, 29(4): 048902.
[15] DU Y X, GAO C, HU Y, et al. A new method of identifying influential nodes in complex networks based on TOPSIS[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 399(1): 5769.
[16] 罗小权, 潘善亮. 改进YOLOV3的火灾检测方法[J]. 计算机工程与应用, 2020, 56(17):187196.
LUO X Q, PAN S L. Improved YOLOV3 fire detection method[J]. Computer Engineering and Applications, 2020, 56(17):187196.
[17] BRUNEAU M, CHANG S E, EGUCHI R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4): 733752.
[18] LATORA V, MARCHIORI M. Vulnerability and protection of infrastructure networks[J]. Physical Review E, 2005, 71(1): 015103.
[1] 郭明健, 高岩. 基于复杂网络理论的电力网络抗毁性分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 1-6.
[2] 肖瑶, 李守伟, 王怡涵. FPGA芯片产业链及知识转移网络特征分析[J]. 复杂系统与复杂性科学, 2022, 19(3): 20-26.
[3] 肖琴, 罗帆. 基于复杂网络的通用航空安全监管演化博弈研究[J]. 复杂系统与复杂性科学, 2022, 19(3): 33-43.
[4] 张健, 宋志刚, 张雨. 基于节点重要性的建筑群火灾蔓延高危建筑的确定方法[J]. 复杂系统与复杂性科学, 2022, 19(3): 66-73.
[5] 吴俊, 邓烨, 王志刚, 谭索怡, 李亚鹏. 复杂网络瓦解问题研究进展与展望[J]. 复杂系统与复杂性科学, 2022, 19(3): 1-13.
[6] 董晓娟, 安海岗, 都沁军, 董志良, 陆刚. 废铜资源全球贸易网络演化特征与响应策略研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 104-110.
[7] 马媛媛, 韩华. 基于有效距离的复杂网络节点影响力度量方法[J]. 复杂系统与复杂性科学, 2022, 19(1): 12-19.
[8] 赵军产, 王少薇, 陆君安, 王敬童. 疫情背景下全球股市网络的抗毁性及预警研究[J]. 复杂系统与复杂性科学, 2022, 19(1): 52-59.
[9] 翁克瑞, 沈卉, 侯俊东. 确定性社会影响力竞争扩散问题研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 21-29.
[10] 张芹, 郭进利. 基于复杂网络理论的质量管理分析[J]. 复杂系统与复杂性科学, 2021, 18(4): 43-49.
[11] 蒋培祥, 董志良, 张翠芝, 张亦池. 常规能源国际贸易网络演化特征研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 66-73.
[12] 公翠娟, 宾晟, 孙更新. 基于多种社交关系的概率矩阵分解推荐算法[J]. 复杂系统与复杂性科学, 2021, 18(1): 1-7.
[13] 吴慧, 顾晓敏, 赵袁军. 产学研合作创新网络拓扑演化的复杂网络研究[J]. 复杂系统与复杂性科学, 2020, 17(4): 38-47.
[14] 王哲, 李建华, 康东, 冉淏丹. 复杂网络鲁棒性增强策略研究综述[J]. 复杂系统与复杂性科学, 2020, 17(3): 1-26.
[15] 何铭, 邹艳丽, 梁明月, 李志慧, 高正. 基于多属性决策的电力网络关键节点识别[J]. 复杂系统与复杂性科学, 2020, 17(3): 27-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed