Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (4): 134-141    DOI: 10.13306/j.1672-3813.2024.04.019
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
终端空域航段拥堵演化机理尖点突变分析模型
朱新平, 陈洪浩, 徐川, 张天雄
中国民用航空飞行学院空中交通管理学院,四川 广汉 618307
The Cusp Catastrophe Analytical Model for the Segment Congestion Evolution Mechanism in Terminal Airspace
ZHU Xinping, CHEN Honghao, XU Chuan, ZHANG Tianxiong
Air Traffic Control College, Civil Aviation Flight University of China, Guanghan 618307, China
全文: PDF(4738 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为保障终端空域正常运行,对终端空域拥堵演变机理进行研究。将拥堵分为自身结构致因和外部因素致因两类,建立了拥堵形成与消散的分析模型;依据交通流演化的特征指标及Greenshields理论建立了拥堵机理尖点突变分析模型。以成都终端空域为研究对象,利用AirTOp软件生成仿真运行数据,验证了模型有效性。结果表明,所设计模型可有效描述拥堵演化的宏观过程,通过航段当量流量、密度及波速的变化,可有效对拥堵演化的机理进行分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱新平
陈洪浩
徐川
张天雄
关键词 交通运输规划与管理终端空域交通流参数航段拥堵突变理论    
Abstract:The study of congestion evolution mechanism in terminal airspace is a vital measure to ensure the normal operation of terminal airspace. This paper divides congestion into two categories: its own structural causes and external causes, and establishes a corresponding analytical model for congestion formation and dissipation. Based on the characteristic indexes of traffic flow evolution and Greenshields theory, the cusp catastrophe analysis model for congestion mechanism is established. In order to verify the validity of the model, this study takes the Chengdu terminal airspace as the object and uses AirTOp software to generate simulation operation data. The results show that the designed model can effectively describe the macroscopic process of congestion evolution, and the mechanism of congestion evolution can be effectively analyzed through the changes of equivalent flow, density and wave speed in the segment.
Key wordstransportation planning and management    terminal airspace    traffic flow parameters    segment congestion    cusp catastrophe
收稿日期: 2023-04-27      出版日期: 2025-01-03
ZTFLH:  U8  
  V355  
基金资助:国家重点研发计划子课程(2021YFB2601704);四川省中央引导地方科技发展专项项目(2020ZYD094);四川省科技计划项目(2021YFS0391);中央高校基本科研经费项目(ZHMH2022-008,J2023-047)
作者简介: 朱新平(1983-),男,湖南常德人,博士,教授,主要研究方向为新一代空中交通管理与民航应急管理。
引用本文:   
朱新平, 陈洪浩, 徐川, 张天雄. 终端空域航段拥堵演化机理尖点突变分析模型[J]. 复杂系统与复杂性科学, 2024, 21(4): 134-141.
ZHU Xinping, CHEN Honghao, XU Chuan, ZHANG Tianxiong. The Cusp Catastrophe Analytical Model for the Segment Congestion Evolution Mechanism in Terminal Airspace[J]. Complex Systems and Complexity Science, 2024, 21(4): 134-141.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.04.019      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I4/134
[1] 中华人民共和国交通运输部.民用航空空中交通管理规则:CCAR-93TM-R6-2023[S/OL]. [2023-05-02]. https://www.gov.cn/zhengce/2022-11/03/content 5717885.htm.
MINISTRY OF TRANSPORT OF THE PEOPLE′S REPUBLIC OF CHINA. Airtraffic management rules for civil aviation:CCAR-93TM-R6-2023[S/OL]. [2023-05-02]. https://www.gov.cn/zhengce/2022-11/03/content 5717885.htm.
[2] 高旗, 初建宇, 李印凤. 基于PSO-BP神经网络的终端区拥堵等级预测模型[J]. 航空计算技术, 2019, 49(6): 57-61.
GAO Q, CHU J Y, LI Y F. Prediction model of congestion level in terminal area based on PSO-BP neural network[J]. Aeronautical Computing Technique, 2019, 49(6): 57-61.
[3] ATTWOOLL V W. Thecosts of terminal area delays[J]. Journal of Navigation, 1968, 21(1): 66-80.
[4] 蒋京芩. 终端区空中交通拥堵态势演变机理研究[D]. 南京: 南京航空航天大学, 2017.
JIANG J Q. Research onevolution mechanism of air traffic congestion in terminal area[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017.
[5] LAVANDIER J, ISLAMI A, DELAHAYE D,et al. Selective simulated annealing for large scale airspace congestion mitigation[J]. Aerospace, 2021, 8(10): 1-16.
[6] REN J, QU S, WANG L, et al. Anen route capacity optimization model based on air traffic control process[J]. Mathematical Biosciences and Engineering, 2022, 19(4): 4277-4299.
[7] YE B, SHERRY L, CHEN C H, et al. Comparison ofalternative route selection strategies based on simulation optimization[J]. Chinese Journal of Aeronautics, 2016, 29(6): 1749-1761.
[8] XU Y, ZHANG H, LIAO Z, et al. A dynamic air traffic model for analyzing relationship patterns of traffic flow parameters in terminal airspace[J]. Aerospace Science and Technology, 2016, 55(8): 10-23.
[9] 谭娟, 王胜春. 基于深度学习的交通拥堵预测模型研究[J]. 计算机应用研究, 2015, 32(10): 2951-2954.
TAN J, WANG S C. Research on preditiction model for traffic congestion based on deep learning[J]. Application Research of Computers, 2015, 32(10): 2951-2954.
[10] 胡启洲, 孙煦. 基于多维联系数的城市路网交通拥堵态势监控模型[J]. 中国公路学报, 2013, 26(6): 143-149.
HU Q Z, SUN X. Model for traffic congestion state monitor in urban road network based on multi-dimension connection number[J]. China Journal of Highway and Transport, 2013, 26(6): 143-149.
[11] 王英平, 王殿海, 杨少辉, 等. 突变理论在交通流分析理论中应用综述[J]. 交通运输系统工程与信息, 2005, 5(6): 68-71.
WANG Y P, WANG D H, YANG S H, et al. A comprehensive review over the application of catastrophe theory in traffic flow[J]. Journal of Transportation Systems Engineering and Information Technology, 2005, 5(6): 68-71.
[12] 王祥雪. 城市快速路交通拥堵机理及状态判别理论与方法研究[D]. 广州: 华南理工大学, 2018.
WANG X X. Research on thetheories and techniques of urban expressway traffic congestion evolution mechanism and condition recognition[D]. Guangzhou: South China University of Technology 2018.
[13] 黄艳国. 城市道路交通拥堵机理及控制方法研究[D]. 广州: 华南理工大学, 2015.
HUANG Y G. Research ontraffic congestion mechanism and traffic control method for urban road[D]. Guangzhou: South China University of Technology, 2015.
[14] 许伦辉, 王祥雪. 基于尖点突变的城市快速路交通流拥堵时空演化研究[J]. 公路, 2016, 61(12): 133-144.
XU L H, WANG X X. Research ontraffic flow congestion space-time evolution of urban expressway based on cusp catastrophe theory[J]. Highway, 2016, 61(12): 133-144.
[15] 张洪海, 杨磊, 别翌荟, 等. 终端区进场交通流广义跟驰行为与复杂相变分析[J]. 航空学报, 2015, 36(3): 251-263.
ZHANG H H, YANG L, BIE Y H, et al. Analysis on generalized following behavior and complex phase-transition law of approaching traffic flow in terminal airspace[J]. Acta Aeronautica Astronautica Sinica, 2015, 36(3): 251-263.
[16] 杨磊. 终端区交通流复杂动态特性与拥堵控制方法[D]. 南京: 南京航空航天大学, 2018.
YANG L. Studies oncomplex dynamics and congestion mitigation methods of air traffic flow in terminal airspace[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
[17] ABDELAZIZ K K,NICAISE Y, SÉGUIS L, et al. Influence of land use land cover change on groundwater recharge in the continental terminal area of abidjan, ivory coast[J]. Journal of Water Resource and Protection, 2020, 12(5): 431-453.
[18] 何兆成, 周亚强, 余志. 基于数据可视化的区域交通状态特征评价方法[J]. 交通运输工程学报, 2016, 16(1): 133-140.
HE Z C, ZHOU Y Q, YU Z. Regionaltraffic state evaluation method based on data visualization[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 133-140.
[19] 许学吉, 孙樊荣, 沐瑶, 等. 基于雷达轨迹数据的航段拥堵分析[J]. 武汉理工大学学报(交通科学与工程版), 2022, 46(4): 624-628.
XU X J, SUN F R, MU Y,et al. Research on segment congestion based on radar trajectory data[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2022, 46(4): 624-628.
[20] OLIVE X, MORIO J. Trajectory clustering of air traffic flows around airports[J]. Aerospace Science and Technology, 2019, 84(1): 776-781.
[21] GERBEND J, ROGIER L. Disruption in the air: the impact of flight rerouting due to air traffic control strikes[J]. Transportation Research Part D: Transport and Environment, 2021, 90(1): 1-17.
[22] 刘浩敏, 曲大义, 宋慧, 等. 快速路交通流状态突变边界提取及其演化规律[DB/OL]. [2023-04-20]. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD65FzzQr8IgOxBG9iAGtsSkSIWCOQqaoQU4i4RYrzsdmk0KMAMaFoy3Z&uniplatform=NZKPT.
LIU H M, QU D Y, SONG H,et al. Extraction of catastrophe boundary and evolution of expressway traffic flow state[DB/OL]. [2023-04-20]. https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD65FzzQr8IgOxBG9iAGtsSkSIW COQqaoQU4i4RYrzsdmk0KMAMaFoy3Z&uniplatform=NZKPT.
[23] HUANG Y G, ZHANG H M, LIU H J, et al. An analysis of the catastrophe model and catastrophe characteristics of traffic flow based on cusp catastrophe theory[J]. Journal of Advanced Transportation, 2022(1): 1-11.
[1] 刘浩敏, 曲大义, 宋慧, 孟奕名. 快速路交通流状态突变边界提取及其演化规律[J]. 复杂系统与复杂性科学, 2023, 20(3): 74-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed