Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (4): 142-148    DOI: 10.13306/j.1672-3813.2024.04.020
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于贝叶斯网络的传统餐饮业食品安全风险分析
刘文燕, 高齐圣
青岛大学经济学院,山东 青岛 266061
Food Safety Risk Analysis of Traditional Catering Business Based on Bayesian Network
LIU Wenyan, GAO Qisheng
School of Economics, Qingdao University, Qingdao 266061, China
全文: PDF(2738 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为明确传统餐饮业食品安全问题的风险因素,从源头上找到治理问题的有效措施,首先通过构建故障树模型进行风险因素识别,利用故障树的最小割集和结构重要度对风险因素进行定性分析;其次将故障树模型转化成贝叶斯网络,利用实例数据进行结构学习和参数学习;利用BN的双向推理能力进行定量分析,最终从餐饮经营者的角度给出各类型问题的敏感因素。结果表明:人员管理发生问题的概率最大;培训不足是发生食品安全事件的重要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘文燕
高齐圣
关键词 食品安全贝叶斯网络故障树风险分析    
Abstract:In order to clarify the risk factors of food safety issues in the traditional catering business and find effective measures to address issues from the source. The fault tree is constructed to identify risk factors, and qualitative analysis of risk factors is done by using the minimum cut set and structural importance. Moreover, the fault tree model is transformed into a Bayesian network, and final BN model is finished by structure learning and parameter learning based on case data. The two-way reasoning ability of BN is used to conduct quantitative analysis, and sensitive factors of various types of problems from the perspective of catering operators are finally obtained. The results indicate that personnel management is most likely to cause problems. Insufficient training is an important reason for food safety issues.
Key wordsfood safety    Bayesian network(BN)    fault tree analysis(FTA)    risk analysis
收稿日期: 2023-07-03      出版日期: 2025-01-03
ZTFLH:  F280  
  TS201.6  
基金资助:教育部人文社会科学研究规划基金(20YJA630018)
通讯作者: 高齐圣(1966-),男,山东潍坊人,博士,教授,主要研究方向为系统理论与数量经济。   
作者简介: 刘文燕(1997-),女,河北张家口人,硕士,主要研究方向为应用统计。
引用本文:   
刘文燕, 高齐圣. 基于贝叶斯网络的传统餐饮业食品安全风险分析[J]. 复杂系统与复杂性科学, 2024, 21(4): 142-148.
LIU Wenyan, GAO Qisheng. Food Safety Risk Analysis of Traditional Catering Business Based on Bayesian Network[J]. Complex Systems and Complexity Science, 2024, 21(4): 142-148.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.04.020      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I4/142
[1] 文晓巍, 刘妙玲. 食品安全的诱因、窘境与监管: 2002~2011年[J]. 改革, 2012(9): 37-42.
WEN X W, LIU M L. Cause, dilemma and supervision of food safety from the year 2012 to 2011[J]. Reform, 2012(9): 37-42.
[2] 余惠琴,吕伟,王东波.基于文本挖掘的我国食品安全事件特征分析[J].武汉理工大学学报(信息与管理工程版), 2022, 44(5): 839-844.
YU H Q, LYU W, WANG D B. Characteristic analysis of food safety incidents in China based on text mining[J]. Journal of Wuhan University of Technology(Information & Management Engineering), 2022, 44(5): 839-844.
[3] 张星联,张冰妍.基于风险交流视角的水产品质量安全风险分级研究[J].中国食物与营养, 2017, 23(11): 29-32.
ZHANG X L, ZHANG B Y. Risk ranking for quality and safety of aquatic products-based on perspective of risk commumcation [J].Food and Nutrition in China, 2017, 23(11): 29-32.
[4] 高齐圣, 路兰, 王伟. 基于QFD和FMEA的农产品质量安全监管分析[J].农业经济与管理, 2017(2): 88-96.
GAO Q S, LU L, WANG W. Analysis on agri-product quality and safety supervision based on QFD and FMEA[J]. Agricultural Economics and Management, 2017(2): 88-96.
[5] 陈洪根.基于故障树分析的食品安全风险评价及监管优化模型[J]. 食品科学, 2015, 36(7): 177-182.
CHEN H G. Modeling for food safety risk evaluation and supervision optimization based on fault tree analysis[J]. Food Science, 2015, 36(7): 177-182.
[6] BOBBIO A, PORTINALE L, MINICHINO M, et al. Improving the analysis of dependable systems by mapping fault trees into Bayesian networks[J]. Reliability Engineering & System Safety, 2001, 71(3): 249-260.
[7] 王广彦, 马志军, 胡起伟. 基于贝叶斯网络的故障树分析[J]. 系统工程理论与实践, 2004,24(6): 78-83.
WANG G Y, MA Z J, HU Q W. The fault tree analysis based on Bayesian network[J]. Systems Engineering Theory& Practice, 2004,24(6): 78-83.
[8] 陈雪龙, 姜坤. 基于贝叶斯网络的并发型突发事件链建模方法[J]. 中国管理科学, 2021, 29(10): 165-177.
CHEN X L, JIANG K. Modeling method of concurrent emergence chain based on Bayesian network[J]. Chinese Journey of Management Science, 2021, 29(10): 165-177.
[9] 许保光, 王蓓蓓, 池宏, 等. 基于贝叶斯网络的航空安全中不安全信息分析[J]. 中国管理科学, 2020, 28(12): 118-129.
XU B G, WANG B B, CHI H, et al. Insecurity information analysis in civil aviation safety based on Bayesian Network[J]. Chinese Journey of Management Science, 2020, 28(12): 118-129.
[10] 李玉龙, 侯相宇. 基于故障树和贝叶斯网络集成的重大工程弃渣场风险诊断与预测[J]. 系统管理学报, 2022, 31(5): 861-874.
LI Y L, HOU X Y. Risk diagnosis and prediction of mega-projection waste dump based on fault tree and Bayesian network integration[J]. Journey of Systems & Management, 2022, 31(5): 861-874.
[11] TCHANGANI A,PÉRÉS F. Modeling interactions for inoperability management: from fault tree analysis to dynamic bayesian network[J]. IFAC-PapersOnLine, 2020, 53(3): 342-347.
[12] 李柯, 唐小艳. 基于FTA-BN的食品安全风险评估与控制模型[J]. 武汉理工大学学报(信息与管理工版), 2017, 39(3): 243-249.
LI K, TANG X Y. Modeling for food safety risk assessment and control based on FTA-BN[J]. Journal of Wuhan University of Technology(Information & Management Engineering), 2017, 39(3): 243-249.
[13] 张冰鉴, 苏秦, 刘海龙. FTA-BN的云ERP不安全事件的人因失误分析[J]. 中国安全科学学报, 2023, 33(2): 38-47.
ZHANG B J, SU Q, LIU H L. Human error analysis for unsafe events of cloud ERP based on FTA-BN[J]. China Safety Science Journal, 2023, 33(2): 38-47.
[14] 丁斅, 徐峰. 基于贝叶斯网络的工程风险管理研究——以港珠澳大桥主体工程设计风险为例[J]. 系统管理学报, 2018, 27(1): 176-185,191.
DING X, XU F. Bayesian network modeling for project risk management: a case study of Hong Kong-Zhuhai-Macao bridge[J]. Journey of Systems & Management, 2018, 27(1): 176-185,191.
[15] KHAKZAD N, KHAN F I, AMYOTTE P. Safety analysis in process facilities: comparison of fault tree and Bayesian network approaches [J]. Reliability Engineering and System Safety, 2011, 96(8): 925-932.
[16] REN J, JENKINSON I, WANG J, et al. A methodology to model causal relationships on offshore safety assessment focusing on human and organizational factors[J]. Journal of Safety Research, 2008, 39(1): 87.
[1] 吕洋, 刘忠轶, 张振源, 刘溪溪. 小餐饮商户接入食品安全溯源体系策略博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(1): 145-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed