Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (4): 149-156    DOI: 10.13306/j.1672-3813.2024.04.021
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
考虑VMD残差量和优化BiLSTM的短期负荷预测
谢煜轩, 王红君, 岳有军, 赵辉
天津理工大学天津市复杂控制理论与应用重点实验室,天津 300384
Short-term Load Forecasting Considering VMD Residuals and Optimizing BiLSTM
XIE Yuxuan, WANG Hongjun, YUE Youjun, ZHAO Hui
School of Automation Tianjin Complex Control Theory and Application of Key Laboratory, Tianjin University of Technology, Tianjin 300384, China
全文: PDF(3711 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为进一步提高短期负荷预测精度,提出了一种基于变分模态分解(VMD)并考虑VMD残差量和改进北方苍鹰算法(INGO)优化双向长短时记忆(BiLSTM)网络的短期负荷预测方法。首先利用VMD将历史负荷数据分解为多个本征模分量(IMFs)和一个残差量。再将各IMF和残差量以及相关气象参数分别构建BiLSTM模型进行预测。为避免因超参数选取不佳对预测精度的影响,采用INGO对BiLSTM的隐含层节点、训练次数、学习率进行优化。最后将预测结果叠加得出最终结果。通过具体算例分析,将本文采用方法与其他方法对比,具有较高的预测精度,验证了本文方法的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢煜轩
王红君
岳有军
赵辉
关键词 短期负荷预测变分模态分解北方苍鹰算法双向长短时记忆网络    
Abstract:This study proposes a new method to improve short-term load forecasting accuracy. The method is based on Variational Modal Decomposition (VMD) with consideration of VMD residuals and an Improved Northern Eagle Algorithm (INGO) optimized Bi-directional Long Short Term Memory (BiLSTM) network. The VMD is used to decompose historical load data into multiple eigenmode components (IMFs) and a residual quantity. The BiLSTM model is then constructed separately for each IMF and residual, as well as the associated meteorological parameters. To avoid the impact of poorly selected hyperparameters on prediction accuracy, the INGO algorithm optimizes the implied layer nodes, training times, and learning rates of the BiLSTM. Last but not least, the prediction results are superimposed to obtain the final results. By analyzing specific cases, this paper′s method has demonstrated a higher prediction precision when compared to alternative methods. This validation confirms the effectiveness of the method presented in this article.
Key wordsshort-term load forecasting    variational mode decomposition    northern goshawk optimization    bi-directional long short-trem memory
收稿日期: 2023-06-01      出版日期: 2025-01-03
ZTFLH:  TM715  
  O224  
基金资助:天津市自然科学基金重点项目(08JCZDJC18600);天津市教委重点基金项目(2006ZD32)
通讯作者: 王红君(1963-),女,天津人,硕士,教授,主要研究方向为复杂系统智能控制理论及应用。   
作者简介: 谢煜轩(1998-),男,河南巩义人,硕士,主要研究方向为复杂系统智能控制理论及应用。
引用本文:   
谢煜轩, 王红君, 岳有军, 赵辉. 考虑VMD残差量和优化BiLSTM的短期负荷预测[J]. 复杂系统与复杂性科学, 2024, 21(4): 149-156.
XIE Yuxuan, WANG Hongjun, YUE Youjun, ZHAO Hui. Short-term Load Forecasting Considering VMD Residuals and Optimizing BiLSTM[J]. Complex Systems and Complexity Science, 2024, 21(4): 149-156.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.04.021      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I4/149
[1] BOZORG M, BRACALE A, CARAMIA P, et al. Bayesian bootstrap quantile regression for probabilistic photovoltaic power forecasting[J]. Protection and Control of Modern Power Systems, 2020, 5(3):218-229.
[2] SHA B, YNA C, MN A, et al. A comparative study of predictive approaches for load forecasting in smart buildings[J]. Procedia Computer Science, 2019, 160:173-180.
[3] HE F F, ZHOU J Z, MO L, et al. Day-ahead short-term load probability density forecastingmethod with a decomposition based quantile regression forest[J]. Applied Energy, 2020, 262(9):234-246.
[4] JUAN F, RENDON S.Structural combination of seasonal exponential smoothing forecasts applied to load forecasting[J]. European Journal of Operational Research, 2019, 275(3):916-924.
[5] YU F, XU X. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network[J]. Applied Energy, 2014, 134:102-113.
[6] KIM Y, SON H, KIM S G. Short term electricity load forecasting for institutional buildings[J]. Energy Reports, 2019, 5:1270-1280.
[7] XIA P P, XUE A H, LIAN T. Analysis and prediction regional electricity consumption based on BP neural network[J]. Journal of Quantum, 2020, 2(1):25-32.
[8] WANG Y, GAN D, SUN M, et al. Probabilistic individual load forecasting using pinball loss guided LSTM[J]. Applied Energy, 2019, 235:10-20.
[9] 刘亚珲,赵倩.基于聚类经验模态分解的CNN-LSTM超短期电力负荷预测[J].电网技术, 2021, 45(11):4444-4451.
LIU Y H, ZHAO Q. Ultra-short-term power load forecasting based on cluster empirical mode decomposition of CNN-LSTM[J]. Power System Technology, 2021, 45(11):4444-4451.
[10] 吕海灿,王伟峰,赵兵,等.基于Wide & Deep-LSTM模型的短期台区负荷预测[J].电网技术, 2020, 44(2):428-436.
LÜ H C, WANG W F, ZHAO B, et al. Short-term stationload forecasting based on Wide & Deep-LSTM model[J]. Power System Technology, 2020, 44(2):428-436.
[11] S.KOUHI, F.KEYNIA. A new cascade NN based method to short-trem load forecast in deregulated electricity market[J]. Energ Convers Mange, 2013, 71:76-83.
[12] 刘建华,李锦程,杨龙月,等.基于EMD-SLSTM的家庭短期负荷预测[J].电力系统保护与控制, 2019, 47(6):40-47.
LIU J H, LI J C, YANG L Y, et al. Short-term household load forecasting based on EMD-SLSTM[J]. Power System Protection and Control, 2019, 47(6):40-47.
[13] 王子乐,王子谋,蔡莹,等.基于长短期记忆神经网络组合算法的短期电力负荷预测[J].现代电力, 2023, 40(2):201-209.
WANG Z Y, WANG Z M, CAI Y, et al. Short-term load forecasting based on long short-term memory network combination algorithm[J]. Modern Electric Power, 2023, 40(2):201-209.
[14] HE F F, ZHOU J Z,FENG Z K, et al. A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm[J]. Appl Energy, 2019,237:103-116.
[15] 李秀昊,刘怀西,张智勇,等.基于VMD-LSTM的超短期风向多步预测[J].南方能源建设, 2023, 10(1):29-38.
LI X H, LIU H X, ZHANG Z Y, et al. Very short-term wind direction multistep forecast based on VMD-LSTM[J]. Southern Energy Construction, 2023, 10(1):29-38.
[16] 顾乾晖,曾斌,涂振宇.基于VMD-PSO-LSTM水质预测模型的应用研究[J].南昌工程学院学报, 2021,40(4):23-29.
GU Q H, ZENG B, TU Z Y. Research on application of water quality prediction model based on VMD-PSO-LSTM[J]. Journal of Nanchang Institute of Technology, 2021,40(4):23-29.
[17] ELDABAH M A, ELSEHIEMY R A, HASANIEN H M, et al. Photovoltaic model parameters identification using Northern Goshawk Optimization algorithm[J]. Energy, 2023, 262(5):125522-125540.
[18] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactionson Signal Processing, 2014, 62(3):531-544.
[19] DEHGHANI M, HUBALOVSKY S, TROJOVSKY P. Northerngoshawk optimization: a new swarm-based algorithm for solving optimi-zation problems[J]. IEEE Access, 2021, 9:162059-162080.
[20] 班多晗,吕鑫,王鑫元.基于一维混沌映射的高效图像加密算法[J].计算机科学, 2020, 47(4):278-284.
BAN D H, LÜ X, WANG X Y. Efficient lmage encryption algorithm based on 1d chaotic map[J]. Computer Science, 2020, 47(4):278-284.
[21] MIRJALILI S. SCA:a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96(5):120-133.
[22] WANG JIESHENG. Improved whale optimization algorithm based on nonlinear adaptive weight and golden sine operator[J]. IEEE Access, 2020, 8:77013-77048.
[23] CHEN B, WANG Y. Short-term electric load forecasting of integrated energy system considering nonlinear synergy between different loads[J]. IEEE Access, 2021, 9:43562-43573.
[24] ZHANG H X, CHENG L L, DING T, et al. Hybrid method for short-term photovoltaic power forecasting based on deep convolutio-nal neural network[J]. IET Generation, Tran-smission & Distribution, 2018, 12(20), 4557-4567.
[1] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed