Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (2): 26-30    DOI: 10.13306/j.1672-3813.2017.02.004
  本期目录 | 过刊浏览 | 高级检索 |
基于Lyapunov稳定性理论的星型耦合电动机网络的混沌同步
汪慕峰1, 韦笃取1, 罗晓曙1, 张波2, 屈莉莉3
1.广西师范大学电子工程学院,广西 桂林 541004;
2.华南理工大学电力学院,广州 510610;
3.佛山科学技术学院自动化学院,广东 佛山 528000
Synchronizatin of Chaos in Star Coupled Motor Networks Based on Lyapunov Stability Theory Based on Lyapunov Stability Theory
WANG Mufeng1, WEI Duqu1, LUO Xiaoshu1, ZHANG Bo2, QU Lili3
1. College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China;
2. College of Electric Power, South China University of Technology, Guangzhou 510610, China;
3. School of Automation, Foshan University,Foshan 528000, China
全文: PDF(829 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 基于Lyapunov稳定性理论和多个体协调控制,通过设计网络中互联电动机节点之间的耦合函数,实现整个星型耦合电动机网络的渐进同步。从理论分析和数值仿真两个方面,证明并验证了该控制策略的有效性。提出的耦合函数结构简单、控制效果良好,对保证电动机传动系统的协调同步运行具有较好的应用参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪慕峰
韦笃取
罗晓曙
张波
屈莉莉
关键词 电动机网络Lyapunov稳定性理论多个体协调控制混沌同步永磁同步电动机    
Abstract:The stability operation of the motor drive system is seriously affected when the motors in networks fall into chaotic motion. In this paper, coupling functions are designed to achieve asymptotically synchronization based on Lyapunov stability theory and coordination control of multi-agent. Theoretical analysis and numerical simulation results demonstrate the correctness and effectiveness of the proposed control strategy. This control strategy may play an important role in the stability operation of complex motor networks in industrial automation manufacturing.
Key wordsmotor networks    Lyapunov stability theory    coordination control of multi-agent    synchronization of chaos    permanent magnet synchronous motor (PMSM)
收稿日期: 2016-03-28      出版日期: 2025-02-25
ZTFLH:  O415  
基金资助:国家自然科学基金(11562004,61263021,51277030)
通讯作者: 韦笃取(1975-),男,广西贵港人,博士,教授,主要研究方向为复杂电机网络动力学行为分析与控制。   
作者简介: 汪慕峰(1990-),男,安徽宿州人,硕士研究生,主要研究方向为复杂电机系统及网络混沌控制。
引用本文:   
汪慕峰, 韦笃取, 罗晓曙, 张波, 屈莉莉. 基于Lyapunov稳定性理论的星型耦合电动机网络的混沌同步[J]. 复杂系统与复杂性科学, 2017, 14(2): 26-30.
WANG Mufeng, WEI Duqu, LUO Xiaoshu, ZHANG Bo, QU Lili. Synchronizatin of Chaos in Star Coupled Motor Networks Based on Lyapunov Stability Theory Based on Lyapunov Stability Theory[J]. Complex Systems and Complexity Science, 2017, 14(2): 26-30.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.02.004      或      https://fzkx.qdu.edu.cn/CN/Y2017/V14/I2/26
[1] 韦笃取, 张波. 基于无源性理论自适应镇定具有v/f输入的永磁同步电动机的混沌运动[J].物理学报, 2012, 61(3): 030505.
Wei Duqu, Zhang Bo. Robust suppressing chaos in permanent magnet synchronous motor with v/f control based on passivity theory[J].Acta Physica Sinica, 2012, 61(3): 030505.
[2] Wei D Q, Zhang B, Qiu D Y, et al. Effects of current time-delayed feedback on the dynamics of a permanent-magnet synchronous motor[J].IEEE Trans Circ Syst II, Exp, 2010, 57(6): 456-460.
[3] 于金鹏,于海生,高军伟,等。基于模糊逼近的永磁同步电机混沌控制[J].复杂系统与复杂性科学, 2013, 10 (4): 86-91.
Yu Jinpeng, Yu Haisheng, Gao Junwei, et al. Chaos control of permanent magnet synchronous motors based on fuzzy-approximation[J].Complex Systems and Complexity Science, 2013, 10 (4): 86-91.
[4] Blair D D, Jensen D L, Doan D R, et al. Networked intelligent motor-control systems[J].IEEE Industry Applications Magazine, 2001, 7(6): 18-25.
[5] Walsh G C, Ye H. Scheduling of networked control systems[J].IEEE Control Systems, 2001, 21(1): 57-65.
[6] Wei D Q, Luo X S, Zhang B. Chaos in complex motor networks induced by Newman-Watts small-world connections[J].Chin Phys B, 2011, 20(12): 128903.
[7] Mai X H, Wei D Q, Zhang B, et al. Controlling chaos in complex motor networks by environment[J].IEEE Trans Circ Syst Ⅱ, 2015, 62(6): 603-607.
[8] Lewis F L. A survey of linear singular system[J].Syst and Signal Process, 1986, 5(1): 3-36.
[9] Liu B, Lu W, Chen T. Synchronization in complex networks with stochastically switching coupling structures[J].IEEE Trans Autom Control, 2012, 57(3): 154-760.
[10] Zhao Y, Wen G, Duan Z. A new observer-type consensus protocol for linear multi-agent dynamical system[J].Asian J Control, 2013, 15(2): 571-582.
[11] Du H, Li S, Ding S. Bounded consensus algorithms for multi-agent systems in directed networks[J].Asian J Control, 2013, 15(1): 282-291.
[12] Cheng L, Hou Z, Tan M. Decentralized adaptive consensus control for multi-manipulator system with uncertain dynamics[C].Proc 2008 IEEE Int Conf on Systems, Man and Cybernetics, Singapore, 2008, 2712-2717.
[13] Hemati N, Kwatny H. Bifurcation of equilibria and chaos in permanent-magnet machines[C].Proceeding of the 32nd Conference on Decision and Control, San Antonio, Texas, 1993: 475-479.
[14] Wei D Q, Zhang B, Luo X S, et al. Effects of couplings on the collective dynamics of permanent-magnet synchronous motors[J].IEEE Trans Circuits Syst II Exp Briefs, 2013, 60(10): 692-696.
[1] 麦贤慧,韦笃取,罗晓曙. Newman-Watts型小世界电机网络混沌行为的牵制控制[J]. 复杂系统与复杂性科学, 2017, 14(1): 96-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed