Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (2): 90-96    DOI: 10.13306/j.1672-3813.2016.02.011
  本期目录 | 过刊浏览 | 高级检索 |
“冰桶挑战”诱导的社交网络演化分析
杨凯, 刘晓露, 林坚洪, 成曦, 郭强, 刘建国
上海理工大学复杂系统科学研究中心,上海 200093
The Evolution of Social Networks Constructed by “Ice Bucket Challenge”
YANG Kai, LIU Xiaolu, LIN Jianhong, CHENG Xi, GUO Qiang, LIU Jianguo
Research Center of Complex Systems Science, University of Shanghai for Science and Technology, Shanghai 200093
全文: PDF(1459 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 考虑社交网络初始阶段的演化过程对于定量认识和理解人际关系的形成与演化的重要意义,搜集“冰桶挑战”事件国内从事件发起到第6天的数据。以挑战者为节点,点名关系为边构造社交网络。通过分析该网络的统计指标,发现网络密度一直减小;网络效率先减小,后又缓慢增加;连通子图的数量先迅速增加,最高增加了初始值的5倍,后又减小;网络效率与子图数量呈负相关关系。考虑到该网络构建的特殊性,与其他社交网络的演化做了对比分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨凯
刘晓露
林坚洪
成曦
郭强
刘建国
关键词 社交网络网络演化拓扑结构冰桶挑战    
Abstract:The evolutionary process of social networks at initial period is very important, especially for the quantitative understanding of the formation and the evolution of interpersonal relationships. In this paper, combining with the “Ice Bucket Challenge”, we collect the data of this event from the launch to the sixth day in our country. The nodes stand for the challengers and the edges are the relations of called people in the social networks. By analyzing the rules of the structural characteristics, including the network size, the clustering coefficient, density, network efficiency and connectivity sub-graphs, we find that the clustering coefficient increased from zero to 0.0167 at the beginning and then decreases; the densityof the network declines from 0.1209 over time; the network efficiency reduces by 81.4% at first and then slowly increases; the connected sub-graphs rapidly increases five times and then decreases; the network efficiency and the number of sub-graphs are negatively correlative. Taking into account the specificity of the network,we compare with evolution of other social networks.Thiswork will be helpful for understanding the law of the formation and development of the early social networks.
Key wordssocial networks    network evolution    topological structure    Ice Bucket Challenge
收稿日期: 2014-10-29      出版日期: 2025-02-25
ZTFLH:  N941  
基金资助:国家自然科学基金(71171136,61374177,71371125);上海市一流学科建设项目(XTKX2012);教育部人文社科基金(13YJA630023);上海出版传媒研究院开放基金(SAYB1407)
通讯作者: 刘建国(1979-),男,山西临汾人,教授,主要研究方向为网络科学,商务智能,知识管理。   
作者简介: 杨凯(1987-),男,山东泰安人,博士研究生,主要研究方向为在线社会网络结构与演化分析。
引用本文:   
杨凯, 刘晓露, 林坚洪, 成曦, 郭强, 刘建国. “冰桶挑战”诱导的社交网络演化分析[J]. 复杂系统与复杂性科学, 2016, 13(2): 90-96.
YANG Kai, LIU Xiaolu, LIN Jianhong, CHENG Xi, GUO Qiang, LIU Jianguo. The Evolution of Social Networks Constructed by “Ice Bucket Challenge”[J]. Complex Systems and Complexity Science, 2016, 13(2): 90-96.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.02.011      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I2/90
[1] 斯坦利·沃瑟曼,凯瑟琳·福斯特. 社会网络分析: 方法与应用[M].陈禹,孙彩虹,译. 北京: 中国人民大学出版社, 2012.
[2] Dodds P S, Muhamad R, Watts D J. An experimental study of search in global social networks[J].Science, 2003, 301(5634): 827-829.
[3] Shin D H. The effects of trust, security and privacy in social networking: a security-based approach to understand the pattern of adoption[J].Interacting with Computers, 2010, 22(5): 428-438.
[4] MisloveA, Marcon M, Gummadi K P, et al. Measurement and analysis of online social networks[C]//Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement. ACM, 2007: 29-42.
[5] Hellmann T, Staudigl M. Evolution of social networks[J].European Journal of Operational Research, 2014, 234(3): 583-596.
[6] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’networks[J].Nature, 1998, 393(6684): 440-442.
[7] Newman M E J, Watts D J. Renormalization group analysis of the small-world network model[J].Physics Letters A, 1999, 263(4): 341-346.
[8] Barabási A L, Albert R. Emergence of scaling in random networks[J].Science, 1999, 286(5439): 509-512.
[9] 张立, 刘云. 虚拟社区网络的演化过程研究[J].物理学报, 2008, 57(9): 5419-5424.
Zhang L, Liu Y. Research on the evolution process of virtual community networks[J].Acta Physica Sinica, 2008, 57(9): 5419-5424.
[10] 熊熙,曹伟, 周欣, 等. 社交网络形成和演化的特征模型研究[J].四川大学学报: 工程科学版, 2012, 44(004): 140-144.
Xiong X, Cao W, Zhou X, etal. Research on the feature model of the formation and evolution of social networks[J].Journal of SichuanUniversity(Engineering Science Edition), 2012, 44(004): 140-144.
[11] Kumar R, Novak J, Tomkins A. Structure and evolution of online social networks[M]//Link Mining: Models, Algorithms, and Applications. Springer New York, 2010: 337-357.
[12] 郭海霞. 新型社交网络信息传播特点和模型分析[J].现代情报, 2012, 32(1): 56-59.
GuoHaixia. New Social networking features andmodel analysis of information dissemination[J].Journal of Modern Information, 2012, 32(1): 56-59.
[13] 汪小帆,李翔,陈关荣.网络科学导论[M].北京:高等教育出版社,2012.
[14] Viswanath B, Mislove A, Cha M, et al. On the evolution of user interaction in Facebook[C]//Proceedings of the 2nd ACM Workshop on Online Social Networks. ACM, 2009: 37-42.
[15] Latora V, Marchiori M. Efficient behavior of small-world networks[J].Physical Review Letters, 2001, 87(19): 198701.
[1] 王筱莉, 张静, 陈淑琴, 钱梦迪. 基于社交网络的舆情多信息交互传播机制研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 38-45.
[2] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[3] 左子健, 张琳, 吴晔, 许小可. 基于社交网络信息的新冠疫情抽检策略研究[J]. 复杂系统与复杂性科学, 2023, 20(3): 20-26.
[4] 张鹏, 菅利荣, 王丹丹. 共生网络视角下工业园生态转型治理机制研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 95-104.
[5] 王玉, 许楠楠, 胡海波. 社交媒体中的跨平台信息扩散特征及机制[J]. 复杂系统与复杂性科学, 2022, 19(4): 7-16.
[6] 王浩, 许小可. 融合文本和表情符号特征的社交网络用户性别识别[J]. 复杂系统与复杂性科学, 2022, 19(4): 17-24.
[7] 赵薇, 李建波, 吕志强, 董传浩. 融合时间和地理信息的兴趣点推荐研究[J]. 复杂系统与复杂性科学, 2022, 19(4): 25-31.
[8] 赵炎, 宾晟, 孙更新. 区块链社交网络中信息传播模型研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 1-8.
[9] 闫晓雪, 纪志坚. 社交网络中多领导者观点的博弈建模分析[J]. 复杂系统与复杂性科学, 2022, 19(1): 20-26.
[10] 翁克瑞, 沈卉, 侯俊东. 确定性社会影响力竞争扩散问题研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 21-29.
[11] 王光波, 孙仁诚, 隋毅, 邵峰晶. 卷积神经网络复杂性质与准确率的关系研究[J]. 复杂系统与复杂性科学, 2021, 18(2): 60-65.
[12] 公翠娟, 宾晟, 孙更新. 基于多种社交关系的概率矩阵分解推荐算法[J]. 复杂系统与复杂性科学, 2021, 18(1): 1-7.
[13] 周双, 宾晟, 孙更新. 融合多关系的矩阵分解社会化推荐算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 30-36.
[14] 钟丽君, 宾晟, 袁敏, 孙更新. 多功能复杂网络模型及其应用[J]. 复杂系统与复杂性科学, 2019, 16(2): 31-40.
[15] 周双, 宾晟, 邵峰晶, 孙更新. 基于多子网复合复杂网络模型的物质扩散推荐算法[J]. 复杂系统与复杂性科学, 2018, 15(4): 77-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed