Please wait a minute...
文章检索
复杂系统与复杂性科学  2023, Vol. 20 Issue (3): 20-26    DOI: 10.13306/j.1672-3813.2023.03.003
  本期目录 | 过刊浏览 | 高级检索 |
基于社交网络信息的新冠疫情抽检策略研究
左子健1, 张琳2, 吴晔3, 许小可3
1.大连民族大学信息与通信工程学院,辽宁 大连 116600;
2. 北京邮电大学理学院, 北京 100876;
3.北京师范大学 a.计算传播学研究中心, 广东 珠海 519085; b. 新闻传播学院, 北京 100875
Sampling Strategy of COVID-19 Based on Social Network Information
ZUO Zijian1, ZHANG Lin2, WU Ye3, XU Xiaoke3
1. College of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China;
2. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
3. a.Computational Communication Research Center, Beijing Normal University, Zhuhai 519087, China; b.School of Journalism and Communication, Beijing Normal University, Beijing 100875, China
全文: PDF(2658 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为解决全员定期核酸检测成本高,导致间隔周期长且效率低的问题,给出了基于社交网络信息的抽检策略,将在线社交网络信息与新冠肺炎传播规律融合,建立了带抽检策略的新冠肺炎传播模型。在此基础上,研究了随机抽检策略、熟人监测策略、度大节点目标抽检监测策略三种策略对新冠肺炎传播的影响。研究发现在校园等人群密集接触的环境下,熟人和度大节点目标抽检策略在峰值幅度、峰值时间、早期预警等指标下都好于随机监测策略,减少了新冠病毒传播天数以及感染人数,能更早、更快地控制住疫情,预警效果从高到低依次是度大节点目标监测策略、熟人监测策略、随机监测策略。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
左子健
张琳
吴晔
许小可
关键词 新冠肺炎早期预警社交网络抽检策略    
Abstract:The cost of regular nucleic acid testing for all staff is high, resulting in long intervals and low efficiency. This paper presents a sampling strategy based on social network information, integrates online social network information with the spread of COVID-19, and establishes a novel coronavirus spread model with a sampling strategy. On this basis, this paper studies the impact of three strategies on the spread of new coronary pneumonia, namely random sampling strategy, acquaintance monitoring strategy, and large node target sampling monitoring strategy. The study found that the random monitoring strategy is better than the random monitoring strategy in the three indicators of peak amplitude, peak time, and early warning in the specific situation of the campus environment, reducing the number of days of new coronavirus transmission and the number of infected people, and more. To control the epidemic earlier and faster, the early warning effect is from high to low: target monitoring strategy for large nodes, acquaintance monitoring strategy, and random monitoring strategy.
Key wordsCOVID-19    early warning    social network information    sampling strategy
收稿日期: 2022-04-23      出版日期: 2023-10-08
ZTFLH:  TB3  
基金资助:国家自然科学基金(62173065); 辽宁省自然科学基金(2020-MZLH-22);北京市社会科学基金重点项目(21DTR40)
通讯作者: 许小可(1979),男,辽宁庄河人,博士,教授,主要研究方向为网络科学和社交网络大数据。   
作者简介: 左子健(1995),男,河北邢台人,硕士研究生,主要研究方向为社交网络上疾病传播学。
引用本文:   
左子健, 张琳, 吴晔, 许小可. 基于社交网络信息的新冠疫情抽检策略研究[J]. 复杂系统与复杂性科学, 2023, 20(3): 20-26.
ZUO Zijian, ZHANG Lin, WU Ye, XU Xiaoke. Sampling Strategy of COVID-19 Based on Social Network Information. Complex Systems and Complexity Science, 2023, 20(3): 20-26.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2023.03.003      或      https://fzkx.qdu.edu.cn/CN/Y2023/V20/I3/20
[1] 陈端兵,白薇,王岩,等.新型冠状病毒肺炎防控效果的定量评估[J].电子科技大学学报,2020,49(3):339344.
CHEN D B, BAI W, WANG Y, et al. Quantitative evaluation of the prevention and control effect of novel coronavirus pneumonia[J]. Journal of University of Electronic Science and Technology of China, 2020,49(3): 339344.
[2] BROWN S T, TAI J, et al. Would school closure for the 2009 H1N1 influenza epidemic have been worth the cost? a computational simulation of Pennsylvania[J]. BMC Public Health, 2011,11(1):353.
[3] YANG Z, ZENG Z, WANG K,et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. Journal of Thoracic Disease, 2020,12(3):165174.
[4] HERRERA J L, SRINIVASAN R, BROWNSTEIN J S, et al. Disease surveillance on complex social networks[J]. PLoS Comput Biol. 2016,12(7):e1004928.
[5] HAGEMAN J C, UYEKI T M, FRANCIS J S, et al. Severe community-acquired pneumonia due to Staphylococcus aureus, 2003-04 influenza season[J]. Emerg Infect Dis,2006,12(6):894900.
[6] THOMPSON W W, COMANOR L, SHAY D K. Epidemiology of seasonal influenza: use of surveillance data and statistical models to estimate the burden of disease[J]. J Infect Dis, 2006,194(2):8291.
[7] CONESA D, MARTÍNEZ-BENEITO M A, AMORóS R, et al. Bayesian hierarchical Poisson models with a hidden Markov structure for the detection of influenza epidemic outbreaks[J]. Stat Methods Med Res, 2015,24(2):206223.
[8] SAPIEZYNSKI P, STOPCZYNSKI A, LASSEN D D, et al. Interaction data from the copenhagen networks study[J]. Scientific Data, 2019,6(1):315.
[9] VEDRAN S, SUNE L, DANFORTH C M. The strength of friendship ties in proximity sensor data[J]. Plos One, 2014,9(7):e100915.
[10] MONES E, STOPCZYNSKI A, LEHMANN S. Contact activity and dynamics of the social core[J]. Epj Data Science, 2017,6(1):116.
[11] LI L M W, CHEN Q, GAO H, et al. Online/offline self-disclosure to offline friends and relational outcomes in a diary study: the moderating role of self-esteem and relational closeness[J]. Int J Psychol, 2023,8(10):9981002.
[12] BARRAT A, CATTUTO C, TOZZI AE, et al. Measuring contact patterns with wearable sensors: methods, data characteristics and applications to data-driven simulations of infectious diseases[J]. Clin Microbiol Infect, 2014,20(1):1016.
[13] ROSSANA M, JULIE F, ALAIN B, et al. Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys[J]. Plos One, 2015,10(9):e0136497.
[14] CATTUTO C, VAN DEN BROECK W, BARRAT A, et al. Dynamics of person-to-person interactions from distributed RFID sensor networks[J]. PLoS One. 2010,5(7):e11596.
[15] PATTERSON M S, NELON J L, LEMKE M K, et al. Exploring the role of social network structure in disease risk among U.S. long-haul truck drivers in urban areas [J]. Am J Health Behav, 2021,45(1):174185.
[16] HUNTER J D. Matplotlib: a 2D graphics environment[J]. Computing in Science & Engineering, 2007,9(3):9095.
[17] SEKARA V, STOPCZYNSKI A, LEHMANN S. Fundamental structures of dynamic social networks[J]. Proc Natl Acad Sci USA, 2016,113(36):99779982.
[18] WAGNER C E, SAAD-ROY C M, MORRIS S E, et al. Vaccine nationalism and the dynamics and control of SARS-CoV-2[J]. Science, 2021,373(6562):7364.
[19] 孙皓宸,徐铭达,许小可.基于真实人际接触数据的新冠肺炎校园传播与防控[J].电子科技大学学报,2020,49(3):399407.
SUN H C, XU M D, XU X K. Campus communication and prevention and control of COVID-19 based on real interpersonal contact data[J]. Journal of University of Electronic Science and Technology of China, 2020,49 (3): 399407.
[20] 孙皓宸,刘肖凡,许小可,等.基于连续感染模型的新冠肺炎校园传播与防控策略分析[J].物理学报,2020,69(24):7483.
SUN H C, LIU X F, XU X K, et al. Analysis on campus transmission and prevention and control strategy of COVID-19 based on continuous infection model[J]. Journal of Physics, 2020,69 (24): 7483.
[21] PARK J K.Timing of endoscopy for acute upper gastrointestinal bleeding[J]. The Korean Journal of Helico-bacter and Upper Gastrointestinal Research, 2021,21(3):248252.
[22] WANG D, HU B, HU C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in wuhan, China[J]. JAMA, 2020,323(11):10611069.
[23] SUN H C, LIU X F, DU Z W, et al. Mitigating COVID-19 transmission in schools with digital contact tracing[J]. IEEE Trans Comput Soc Syst, 2021,8(6):13021310.
[24] 孙琬琬,凌锋,潘金仁,等.浙江省新型冠状病毒肺炎家庭聚集性疫情流行特征分析[J].中华预防医学杂志,2020,54(6):625629.
SUN W W, LING F, PAN J R, et al. Epidemic characteristics of novel coronavirus pneumonia family cluster epidemic in Zhejiang Province[J]. Chinese Journal of Preventive Medicine, 2020,54(6): 625629.
[25] NISHIURA H, KOBAYASHI T, SUZUKI A, et al. Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19)[J].International Journal of Infectious Diseases,2020,94(3):154155.
[1] 赵薇, 李建波, 吕志强, 董传浩. 融合时间和地理信息的兴趣点推荐研究[J]. 复杂系统与复杂性科学, 2022, 19(4): 25-31.
[2] 王浩, 许小可. 融合文本和表情符号特征的社交网络用户性别识别[J]. 复杂系统与复杂性科学, 2022, 19(4): 17-24.
[3] 王玉, 许楠楠, 胡海波. 社交媒体中的跨平台信息扩散特征及机制[J]. 复杂系统与复杂性科学, 2022, 19(4): 7-16.
[4] 赵炎, 宾晟, 孙更新. 区块链社交网络中信息传播模型研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 1-8.
[5] 赵军产, 王少薇, 陆君安, 王敬童. 疫情背景下全球股市网络的抗毁性及预警研究[J]. 复杂系统与复杂性科学, 2022, 19(1): 52-59.
[6] 闫晓雪, 纪志坚. 社交网络中多领导者观点的博弈建模分析[J]. 复杂系统与复杂性科学, 2022, 19(1): 20-26.
[7] 翁克瑞, 沈卉, 侯俊东. 确定性社会影响力竞争扩散问题研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 21-29.
[8] 公翠娟, 宾晟, 孙更新. 基于多种社交关系的概率矩阵分解推荐算法[J]. 复杂系统与复杂性科学, 2021, 18(1): 1-7.
[9] 周双, 宾晟, 孙更新. 融合多关系的矩阵分解社会化推荐算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 30-36.
[10] 周双, 宾晟, 邵峰晶, 孙更新. 基于多子网复合复杂网络模型的物质扩散推荐算法[J]. 复杂系统与复杂性科学, 2018, 15(4): 77-84.
[11] 吴晓, 刘万平, 杨武, 卢玲, 刘小洋, 黄诗雯. 新型社交网络谣言传播演化模型研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 34-44.
[12] 李沧海, 许益贴, 罗春海, 胡海波. 微博信息扩散的空间分析[J]. 复杂系统与复杂性科学, 2017, 14(3): 75-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed