Please wait a minute...
文章检索
复杂系统与复杂性科学  2023, Vol. 20 Issue (3): 11-19    DOI: 10.13306/j.1672-3813.2023.03.002
  本期目录 | 过刊浏览 | 高级检索 |
边转换与增加对有向网络能控性的影响
张虎林, 李成铁, 王立夫
东北大学秦皇岛分校控制工程学院,河北 秦皇岛 066004
Influence of Alteration and Addition of Edges on Directed Network Controllability
ZHANG Hulin, LI Chengtie, WANG Lifu
School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
全文: PDF(2068 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 复杂网络的不同类型边转换(方向改变)和在不同节点间增加边对网络能控性有不同影响,为了更好地了解有向网络边转换和增加对网络能控性影响,提出一种边分类方法,把边根据节点类别和匹配关系分成12种类型,并给出辨识算法。基于此分类给出网络边转换和增加时网络能控性(驱动节点数目)的变化规律。通过模型网络和实际网络分析了每种边在网络中的比例,并分析了边转换和增加时驱动节点数目变化。结果验证了定理的正确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张虎林
李成铁
王立夫
关键词 网络能控性驱动节点最大匹配转换边增加边    
Abstract:The alternation of different types of edges (direction changed) and the addition of edges between different nodes in complex networks will have different effect on the controllability of the network. In order to better understand the influence of altering different edges and adding different edges on network controllability in directed networks, this paper proposes a classification method of edges. According to the node category and matching relationship, the directed edges are divided into twelve types, and the algorithm of identification is given. Based on the classification, the change law of network controllability (the number of driving nodes) is given when the edges of networks are altered and added. Through the simulation experiment of the model networks and the actual networks, the proportion of different types of edges is analyzed. When edges are altered and added, the changes in the number of driven nodes are analyzed in the model networks and the actual networks. The correctness of the theorems of this article are verified.
Key wordsnetwork controllability    driver node    maximum matching    alteration of edges    addition of edges
收稿日期: 2021-12-29      出版日期: 2023-10-08
ZTFLH:  N94  
基金资助:中央高校基本科研业务费专项资金(N2023022)
通讯作者: 李成铁(1982),男,吉林长春人,博士,讲师,主要研究方向为智能控制和网络应用技术、大数据传输技术。   
作者简介: 张虎林(1999),男,河北廊坊人,硕士研究生,主要研究方向为复杂网络能控性。
引用本文:   
张虎林, 李成铁, 王立夫. 边转换与增加对有向网络能控性的影响[J]. 复杂系统与复杂性科学, 2023, 20(3): 11-19.
ZHANG Hulin, LI Chengtie, WANG Lifu. Influence of Alteration and Addition of Edges on Directed Network Controllability. Complex Systems and Complexity Science, 2023, 20(3): 11-19.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2023.03.002      或      https://fzkx.qdu.edu.cn/CN/Y2023/V20/I3/11
[1] ZHANG Z K, LIU C, ZHAN X X, et al. Dynamics of information diffusion and its applications on complex networks[J]. Physics Reports, 2016, 651(1): 134.
[2] ARIONAS S, BOMPARD E, CARBONE A, et al. Power grid vulnerability: a complex network approach[J]. Chaos, 2009, 19(1): 013119.
[3] BULDYREV S V, PARSHANI R, PAUL G, et al. Catastrophic cascade of failures in interdependent networks[J]. Nature, 2010, 464 (7291): 10251028.
[4] XU Z, HARRISS R. Exploring the structure of the US intercity passenger air transportation network: a weighted complex network approach[J]. Geojournal, 2008, 73(2): 87102.
[5] PRILL R J, IGLESIAS P A, LEVCHENKO A. Dynamic properties of network motifs contribute to biological network organization[J]. Plos Biology, 2005, 3(11): 18811892.
[6] WATTS, DUNCAN J. The “new” science of networks[J]. Annual Review of Sociology, 2004, 30(1): 243270.
[7] ALBERT R, BARABASI A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics, 2002, 74(1): 4797.
[8] NACHER J C, AKUTSU T. Structural controllability of unidirectional bipartite networks[J]. Scientific Reports, 2013, 3(1): 1647.
[9] KEMPE D, KLEINBERG J, TARDOS E. Maximizing the spread of influence through a social network[J]. Theory of Computing, 2003, 11(4): 137146.
[10] LIU Y Y, SLOTINE J J, BARABASI A L. Controllability of complex networks[J]. Nature, 2011, 473(7346): 167173.
[11] TANG M, JIANG G, DENG G Q, et al. A new algorithm and application of solving maximum matching problem of bipartite graph[J]. Computer Systems & Applications, 2012, 21(3): 7275.
[12] LI J, WANG S Y. An algorithm for constructing the maximum matching graphs on bigraphs[J]. Acta Electronica Sinica, 2010, 38(1): 161166.
[13] YUAN Z, ZHAO C, DI Z, et al. Exact controlability of complex networks[J]. Nature Communications, 2013, 4(2447): 2447.
[14] PóSFAI M, HÖVEL P. Structural controllability of temporal networks[J]. New Journal of Physics, 2014, 16(12): 123055.
[15] PóSFAI M, GAO J, CORNELIUS S P, et al. Controllability of multiplex, multi-time-scale networks[J]. Physical Review E, 2016, 94(3): 032316.
[16] MENARA T, BASSETT D, PASQUALETTI F. Structural controllability of symmetric networks[J]. IEEE Transactions on Automatic Control, 2019, 64 (9): 37403747.
[17] YANG Y. Research progress in enhancing the controllability of complex networks[J]. Discrete Dynamics in Nature and Society, 2020(3): 18.
[18] CHEN X, PEQUITO S, PAPPAS G J, et al. Minimal edge addition for network controllability[J]. IEEE Transactions on Control of Network Systems, 2018, 6(1): 312323.
[19] MENICHETTI G, GIULIA, DALL′ASTA, et al. The controllability of networks is determined by the density of low in-degree and low out- degree nodes[DB/OL].[20210624].http://arxiv.org/abs/1405.4365v2.
[20] ZHANG Y, ZHOU T. Minimal structural perturbations for controllability of a networked system: complexities and approximations [J]. International Journal of Robust and Nonlinear Control, 2019,29(7291): 41914208.
[21] WANG W X, NI X, LAI Y C, et al. Optimizing controllability of complex networks by minimum structural perturbations[J]. Physical Review E, 2012, 85(2): 026115.
[22] WANG X, XIANG L. Optimizing network controllability with minimum cost[J]. Complexity, 2021(3): 113.
[23] RONG L, LIU J. A heuristic algorithm for enhancing the robustness of scale-free networks based on edge classification[J]. Physica A, 2018, 503: 503515.
[24] HOU L, LAO S, SMALL M, Xiao Y. Enhancing complex network controllability by minimum link direction reversal[J]. Physics Letters A, 2015, 379(20/21): 13211325.
[25] XIAO Y D, LAO S Y, HOU L L, et al. Edge orientation for optimizing controllability of complex networks[J]. Physical Review E, 2014, 90(4): 042804.
[26] XIAO Y, LAO S Y, HOU L, et al. Effects of edge directions on the structural controllability of complex networks[J]. Plos One, 2015, 10(8): 0135282.
[27] SON S W, KIM B J, HONG H, et al. Dynamics and directionality in complex networks[J]. Physical Review Letters, 2009, 103(22): 228702.
[28] HAO Y, JIA L, WANG Y. Edge attack strategies in interdependent scale-free networks[J]. Physica A, 2019, 540(1): 122759.
[29] LOU Y, WANG L, CHEN G. A framework of hierarchical attacks to network controllability[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 98(7346): 105780.
[30] HOPCROFT J E, KARP R M. An n5/2 algorithm for maximum matching in bipartite graphs[C] // Meyer A R, Fischer M J. 12th Annual Symposium on Switching and Automata Theory. East Lansing: IEEE, 1971: 122125.
[31] JIA T, LIU Y Y, CSóKA E, et al. Emergence of bimodality in controlling complex networks[J]. Nature Communications, 2013, 4(1): 2002.
[32] ERDOS P, RENYI A. On random graphs[J]. Publicationes Mathematicae, 1959, 6(1): 290297.
[33] BARABÁSI A-L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286 (5439): 509512.
[34] KUNEGIS J. KONECT [EB/OL]. (2013530)[20211130]. http://konect.cc/networks/.
[35] WASSERMAN, FAUST. Social network [EB/OL]. (20031011)[20211130]. http://vlado.fmf.uni-lj.si/pub/networks/data/.
[1] 任翠萍, 杨明翔, 张裕铭, 谢逢洁. 快递安全事故致因网络构建及结构特性分析[J]. 复杂系统与复杂性科学, 2023, 20(2): 74-80.
[2] 李巧丽, 韩华, 李秋晖, 曾茜. 基于最优路径相似度传输矩阵的链路预测方法[J]. 复杂系统与复杂性科学, 2023, 20(1): 9-17.
[3] 王玉, 许楠楠, 胡海波. 社交媒体中的跨平台信息扩散特征及机制[J]. 复杂系统与复杂性科学, 2022, 19(4): 7-16.
[4] 张董极, 杨会杰, 肖琴. 中国演员和导演网络对电影市场的影响分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 32-39.
[5] 李军涛, 胡启贤, 刘朋飞, 郭文文. 跨层穿梭车双提升机系统多目标问题优化[J]. 复杂系统与复杂性科学, 2022, 19(4): 80-90.
[6] 吴俊, 邓烨, 王志刚, 谭索怡, 李亚鹏. 复杂网络瓦解问题研究进展与展望[J]. 复杂系统与复杂性科学, 2022, 19(3): 1-13.
[7] 张健, 宋志刚, 张雨. 基于节点重要性的建筑群火灾蔓延高危建筑的确定方法[J]. 复杂系统与复杂性科学, 2022, 19(3): 66-73.
[8] 王姗姗, 张纪会. “货到人”拣选系统订单分批优化[J]. 复杂系统与复杂性科学, 2022, 19(3): 74-80.
[9] 邓云生, 张纪会. 基于分组选择的可调聚类网络中个体的合作行为研究[J]. 复杂系统与复杂性科学, 2022, 19(2): 39-44.
[10] 马媛媛, 韩华. 基于有效距离的复杂网络节点影响力度量方法[J]. 复杂系统与复杂性科学, 2022, 19(1): 12-19.
[11] 闫晓雪, 纪志坚. 社交网络中多领导者观点的博弈建模分析[J]. 复杂系统与复杂性科学, 2022, 19(1): 20-26.
[12] 赵军产, 王少薇, 陆君安, 王敬童. 疫情背景下全球股市网络的抗毁性及预警研究[J]. 复杂系统与复杂性科学, 2022, 19(1): 52-59.
[13] 陈卓然, 韩定定. 一类交通信息物理系统的动态路径引导[J]. 复杂系统与复杂性科学, 2022, 19(1): 81-87.
[14] 翁克瑞, 沈卉, 侯俊东. 确定性社会影响力竞争扩散问题研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 21-29.
[15] 刘勇. 疾病、经济增长与相对贫困的复杂系统建模研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 58-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed