Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (1): 131-137    DOI: 10.13306/j.1672-3813.2025.01.017
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于多层超图卷积神经网络的故障诊断方法
张元东1, 张先杰2, 张若楠1, 张海峰2
1.中国大唐集团科学技术研究总院有限公司华东电力试验研究院,合肥 230000;
2.安徽大学数学科学学院,合肥 230601
Fault Diagnosis Method Based on Multilayer Hypergraph Convolutional Neural Network
ZHANG Yuandong1, ZHANG Xianjie2, ZHANG Ruonan1, ZHANG Haifeng2
1. East China Electric Power Test and Research Institute, China Datang Corporation Science and Technology Research Institute Co, Ltd, Hefei 230000, China;
2. School of Mathematical Sciences, Anhui University, Hefei 230601, China
全文: PDF(5529 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 机器学习方法在复杂工业过程中的故障诊断方面获得了很大的发展。然而,现有的大多数方法只考虑独立样本的特征,或者样本之间的二元关系,很少考虑样本之间的高阶关系以及结构多样性。因此提出一种基于多层超图卷积神经网络的故障诊断方法,该方法首先利用多种相似性指标构建出具有不同结构的多层超图,然后通过层内超图卷积以及层间图卷积的操作进行特征的提取与融合。在SEU的仿真数据集以及磨煤机组的真实数据集中进行实验,结果表明该方法可以有效地提高故障诊断的精度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张元东
张先杰
张若楠
张海峰
关键词 超图神经网络(HGNN)图卷积网络(GCN)多层超图故障诊断    
Abstract:Machine learning methods have made significant advancements in the field of fault diagnosis, especially for the complex industrial processes. However, most existing methods only consider the features of individual samples or pairwise relationships between samples, rarely taking into account higher-order relationships among samples and structural diversity among samples. Therefore, this paper proposes a fault diagnosis method based on a multilayer hypergraph convolutional neural network. The method first utilizes multiple similarity indicators to construct multilayer hypergraphs with different structures. Then, it performs intralayer hypergraph convolution and interlayer graph convolution operations to extract and fuse features. Experiments are conducted on the simulation dataset of SEU and the real dataset of the coal mill unit, and the results show that this method can effectively improve the accuracy of fault diagnosis.
Key wordshypergraph neural network (HGNN)    graph convolutional network (GCN)    multilayer hypergraph    fault diagnosis
收稿日期: 2023-08-11      出版日期: 2025-04-27
ZTFLH:  TP391.5  
  TH133.3  
基金资助:国家自然科学基金(61973001)
通讯作者: 张海峰(1977-),男,安徽合肥人,博士,教授,主要研究方向为复杂网络与复杂系统、人工智能及应用。   
作者简介: 张元东(1993-),男,黑龙江牡丹江人,硕士研究生,主要研究方向为复杂网络与工业故障诊断、系统集成。
引用本文:   
张元东, 张先杰, 张若楠, 张海峰. 基于多层超图卷积神经网络的故障诊断方法[J]. 复杂系统与复杂性科学, 2025, 22(1): 131-137.
ZHANG Yuandong, ZHANG Xianjie, ZHANG Ruonan, ZHANG Haifeng. Fault Diagnosis Method Based on Multilayer Hypergraph Convolutional Neural Network[J]. Complex Systems and Complexity Science, 2025, 22(1): 131-137.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.01.017      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I1/131
[1] 池阔,康建设,张星辉,等.基于匹配稳态随机共振的轴承故障诊断方法[J].复杂系统与复杂性科学, 2019, 16(2): 85-94.
CHI K, KANG J S, ZHANG X H, et al. Bearing fault diagnosis based matched-stable stochastic resonance[J]. Complex Systems and Complexity Science, 2019, 16(2): 85-94.
[2] ZHONG K, HAN M, QIU T, et al. Fault diagnosis of complex processes using sparse kernel local fisher discriminant analysis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(5): 1581-1591.
[3] ZHAO M H, ZHONG S, FU X Y, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681-4690.
[4] 宋志坤,徐立成,胡晓依,等.基于改进型shapelets算法的动车组轴箱轴承故障诊断方法研究[J]. 仪器仪表学报, 2021, 42(2): 66-74.
SONG Z K, XU L C, HUX Y, et al. Research on fault diagnosis method of axle box bearing of emu based on improved shapelets algorithm[J]. Chinese Journal of Scientific Instrument, 2021, 42(2): 66-74.
[5] 尹怀仙,王凯,张铁柱,等.基于PSO-BP神经网络的城轨列车转向架轮对轴箱故障预测[J]. 复杂系统与复杂性科学, 2015, 12(4): 97-103.
YIN H X, WANG K,ZHANG T Z, et al. Fault prediction based on PSO-BP neural network about wheel and axle box of bogie in urban rail train[J]. Complex Systems and Complexity Science, 2015, 12(4): 97-103.
[6] KONG X W, LI X Y, ZHOU Q, et al. Attention recurrent autoencoder hybrid model for early fault diagnosis of rotating machinery[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-10.
[7] LI T F, ZHOU Z, LI S N, et al. The emerging graph neural networks for intelligent fault diagnostics and prognostics: a guideline and a benchmark study[J]. Mechanical Systems and Signal Processing, 2022, 168: 108653.
[8] 陈起磊,蒋亦悦,唐瑶,等.基于时频图与改进图卷积神经网络的异步电机故障诊断方法[J].振动与冲击,2022,41(24):241-248.
CHEN Q L, JIANG Y Y, TANG Y, et al. An induction motor fault diagnosis method based on the time-frequency image method and an improved graph convolutional network[J]. Journal of Vibration and Shock, 2022, 41(24): 241-248.
[9] LI T F, ZHAO Z B, SUN C, et al. Multireceptive field graph convolutional networks for machine fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 12739-12749.
[10] CHEN D Y, LIU R N, HU Q H, et al. Interaction-aware graph neural networks for fault diagnosis of complex industrial processes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(9): 6015-6028.
[11] XIA L Q, LIANG Y S, ZHENG P, et al. Residual-hypergraph convolution network: a model-based and data-driven integrated approach for fault diagnosis in complex equipment[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-11.
[12] SHI M K, DING C C, WANG R, et al. Deep hypergraph autoencoder embedding: an efficient intelligent approach for rotating machinery fault diagnosis[J]. Knowledge-Based Systems, 2022, 260: 110172.
[13] YAN X S, LIU Y, ZHANG C A. Multiresolution hypergraph neural network for intelligent fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-10.
[14] ZHANG K L, LI H K, CAO S X, et al. Motor current signal analysis using hypergraph neural networks for fault diagnosis of electromechanical system[J]. Measurement, 2022, 201: 111697.
[15] WELLING M, KIPF T. Semi-supervised classification with graph convolutional networks[C]. International Conference on Learning Representations (ICLR). Toulon, France, 2017.
[16] FENG Y F, YOU H X, ZHANG Z Z, et al. Hypergraph neural networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019,33(1): 3558-3565.
[17] SHAO S Y, MCALEER S, YAN R Q, et al. Highly accurate machine fault diagnosis using deep transfer learning[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2446-2455.
[1] 邓中乙. 面向磨煤机组故障诊断的聚类粗化图模型[J]. 复杂系统与复杂性科学, 2024, 21(1): 152-158.
[2] 池阔, 康建设, 张星辉, 杨志远, 赵斐. 基于匹配稳态随机共振的轴承故障诊断方法[J]. 复杂系统与复杂性科学, 2019, 16(2): 85-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed