Abstract:To promote the coordinated and high-quality development of China's economy, this study combines the theory of flow-based economy and multiplex network analysis methods to construct a network model of material, capital, and technology information flow among cities. The entropy-based multi-attribute node importance measurement method is applied to propose a new framework for measuring the level of urban economy. Research shows that urban network structure is closely related to changes in macroeconomic conditions. The output results of the constructed economic level measurement model are consistent with authoritative survey reports, thus proving its effectiveness. Further studies reveal notable urban economic disparities across China's regions, with the east and the Yangtze River Delta in the lead. Positive trends emerged in the west and northeast due to policy guidance, but the central and Bohai Economic Circle still need more policy support. The flow of technological information is crucial for the upgrading of economic levels in economically developed regions. In contrast, the growth of levels in underdeveloped regions relies more on new capital investment.
师妍, 张自力, 赵学军. 城市流量型经济多重网络结构分析与能级测度[J]. 复杂系统与复杂性科学, 2026, 23(1): 96-103.
SHI Yan, ZHANG Zili, ZHAO Xuejun. Urban Economic Flow Structure and Economic Energy Level Measurement from the Perspective of Multiplex Networks[J]. Complex Systems and Complexity Science, 2026, 23(1): 96-103.
[1] 孙志刚.城市功能论[M].北京:经济管理出版社,1998. [2] 王成福.成渝地区双城经济圈交通能级与经济能级测度及耦合关系研究[D]. 重庆:重庆交通大学,2023. WANG C F. Research on the measurement and the coupling of transportation energy levels and economic energy levels in the chengdu-chongqing economic circle [D].Chongqing: Chongqing Jiaotong University, 2023. [3] 周振华,韩汉君.流量经济及其理论体系[J].上海经济研究, 2002(1): 21-31. ZHOU Z H, HAN H J. Flow economy and its theoretical system [J]. Shanghai Journal of Economics, 2002(1): 21-31. [4] 江若尘,陈昌东,郑宇晨,等.上海流量型经济能级指数对标分析及发展思路[J].科学发展,2022(5):48-56. JIANG R C, CHEN C D, ZHENG Y C, et al. Benchmarking analysis and development ideas of shanghai's flow-based economy energy level index [J]. Scientific Development, 2022 (5): 48-56. [5] 吴英晗,李明达,胡枫.基于熵的多属性决策超网络重要节点识别方法[J].复杂系统与复杂性科学,2023,20(4):40-46. WU Y H, LI M D, HU F. A multi-attribute decision-making method based on entropy to identify important nodes in hypernetworks [J]. Complex Systems and Complexity Science, 2023,20 (4): 40-46. [6] 李世轩,杨和财,王海燕.基于能级-联动下丹凤葡萄酒产业发展规划研究[J].中国酿造,2022,41(8):252-256. LI S X, YANG H C, WANG H Y. Development plan research of Danfeng wine industry based on energy level linkage [J]. China Brewing, 2022, 41 (8): 252-256. [7] 李真. 金融能级与城市产业创新竞争力:城域分化与耦合协同 [J]. 财经研究, 2023, 49 (9): 19-33. LI Z. Financial integration level and urban industrial innovation competitiveness: urban differentiation and coupling coordination [J] Journal of Finance and Economics, 2023, 49 (9): 19-33. [8] 刘阳慧,杨山,范擎宇,等.长三角地区城市能级网络结构演变及影响因素研究[J].南京师大学报(自然科学版),2023,46(2):34-43. LIU Y H, YANG S, FAN Q Y, et al. Study on the structural evolution and influencing factors of urban energy level network in the yangtze river delta region [J]. Journal of Nanjing Normal University (Natural Science Edition), 2023,46 (2): 34-43. [9] 欧阳杰,李家慧.世界级城市群及其中心城市的枢纽能级分析——基于国际航空网络结构的研究[J].城市问题,2020(11):43-49. OUYANG J, LI J H. Hub level analysis of world-class urban agglomerations and their central cities: a study based on international aviation network structure [J]. Urban Problems, 2020 (11): 43-49. [10] 张自力,闫红蕾,张楠.股票网络、系统性风险与股票定价[J].经济学,2020,19(1):329-350. ZHANG Z L, YAN H L, ZHANG N. Stock network, systematic risk and stock pricing implications [J]. China Economic, 2020,19 (1): 329-350. [11] 李振洪. 西部陆海新通道经济联系网络空间特征及影响因素研究[D]. 重庆:重庆工商大学, 2023. LI Z H. Research on the spatial characteristics and influencing factors of the economic connection network of the new land-sea corridor in the west [D]. Chongqing :Chongqing Technology and Business University, 2023. [12] 仇怡,韩晚晚,吴建军. 长江中游城市群创新空间关联网络动态演变——基于社会网络分析法的研究 [J]. 湘潭大学学报(哲学社会科学版), 2021, 45(5): 80-86,107. QIU Y, HAN W W, WU J J. Dynamic evolution of innovation space correlation network of urban agglomeration in the middle reaches of yangze river-an empirical research based on social network analysis [J] Journal of Xiangtan University (Philosophy and Social Sciences), 2021, 45(5): 80-86,107. [13] 涂贵宇,潘文林,张天军.基于信息熵的超网络重要节点识别方法[DB/OL].[2024-02-21]. http://kns.cnki.net/kcms/detail/37.1402.N.20231204.0952.002.html. TU G Y, PAN W L, ZHANG T J. Identification methods of important nodes based on information entropy in hypernetwork [DB/OL]. [2024-02-21]. http://kns.cnki.net/kcms/detail/37.1402.N.20231204.0952.002.html. [14] 周丽娜,李发旭,巩云超等.基于K-shell的超网络关键节点识别方法[J].复杂系统与复杂性科学,2021,18(3):15-22. ZHOU L N, LI F X, GONG Y C, et al. Identification methods of vital nodes based on k-shell in hypernetworks [J]. Complex Systems and Complexity Science, 2021,18(3): 15-22. [15] WATTS D J, STROGATZ S H. Collective dynamics of small-world networks [J]. Nature, 1998, 393(6684): 440-442. [16] 焦欢.对19个副省级及以上城市的城市能级测评[J].国家治理,2019(6):3-23. JIAO H. Evaluation of urban energy levels in 19 sub-provincial and above cities [J]. Governance, 2019(6): 3-23.