Please wait a minute...
文章检索
复杂系统与复杂性科学  2026, Vol. 23 Issue (1): 96-103    DOI: 10.13306/j.1672-3813.2026.01.012
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
城市流量型经济多重网络结构分析与能级测度
师妍1,2, 张自力2, 赵学军2
1.北京大学光华管理学院,北京 100871;
2.嘉实基金管理有限公司,北京 100020
Urban Economic Flow Structure and Economic Energy Level Measurement from the Perspective of Multiplex Networks
SHI Yan1,2, ZHANG Zili2, ZHAO Xuejun2
a. Guanghua School of Management, Peking University, Beijing 100871, China;b. Harvest Fund Management, Beijing 100020, China
全文: PDF(6106 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为促进中国区域经济的协调和高质量发展,结合流量型经济理论与多重网络分析方法,构建了城市间物资、资金、技术信息流网络模型,应用基于熵的多属性节点重要性测度方法,提出了一种城市经济能级测度新框架。研究显示,城市网络结构特征与宏观经济状态变化密切相关。所构建的能级测度模型输出结果与权威报告一致,从而证明了其有效性。进一步研究发现,中国各经济区城市能级差异显著,东部及长三角区域得分领先,西部和东北地区在政策引导下呈现积极发展态势,中部和环渤海区域仍需加强政策支持。技术信息流对东部等经济发达区域的能级提升至关重要,而西部等欠发达区域的能级增长则更依赖于新资本投资。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
师妍
张自力
赵学军
关键词 城市经济能级多重网络流量型经济多属性决策熵权法    
Abstract:To promote the coordinated and high-quality development of China's economy, this study combines the theory of flow-based economy and multiplex network analysis methods to construct a network model of material, capital, and technology information flow among cities. The entropy-based multi-attribute node importance measurement method is applied to propose a new framework for measuring the level of urban economy. Research shows that urban network structure is closely related to changes in macroeconomic conditions. The output results of the constructed economic level measurement model are consistent with authoritative survey reports, thus proving its effectiveness. Further studies reveal notable urban economic disparities across China's regions, with the east and the Yangtze River Delta in the lead. Positive trends emerged in the west and northeast due to policy guidance, but the central and Bohai Economic Circle still need more policy support. The flow of technological information is crucial for the upgrading of economic levels in economically developed regions. In contrast, the growth of levels in underdeveloped regions relies more on new capital investment.
Key wordsurban economic level    multiplex networks    flow-based economy    multi-attribute decision making    entropy method
收稿日期: 2024-03-08      出版日期: 2026-02-13
ZTFLH:  F293  
  F127  
通讯作者: 张自力(1964-),男,重庆人,博士,教授,主要研究方向为复杂网络理论及应用。   
作者简介: 师 妍(1994-),女,山西太原人,博士,高级经济师,主要研究方向为非线性复杂流体系统建模及其在经济、金融系统中的应用。
引用本文:   
师妍, 张自力, 赵学军. 城市流量型经济多重网络结构分析与能级测度[J]. 复杂系统与复杂性科学, 2026, 23(1): 96-103.
SHI Yan, ZHANG Zili, ZHAO Xuejun. Urban Economic Flow Structure and Economic Energy Level Measurement from the Perspective of Multiplex Networks[J]. Complex Systems and Complexity Science, 2026, 23(1): 96-103.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2026.01.012      或      https://fzkx.qdu.edu.cn/CN/Y2026/V23/I1/96
[1] 孙志刚.城市功能论[M].北京:经济管理出版社,1998.
[2] 王成福.成渝地区双城经济圈交通能级与经济能级测度及耦合关系研究[D]. 重庆:重庆交通大学,2023.
WANG C F. Research on the measurement and the coupling of transportation energy levels and economic energy levels in the chengdu-chongqing economic circle [D].Chongqing: Chongqing Jiaotong University, 2023.
[3] 周振华,韩汉君.流量经济及其理论体系[J].上海经济研究, 2002(1): 21-31.
ZHOU Z H, HAN H J. Flow economy and its theoretical system [J]. Shanghai Journal of Economics, 2002(1): 21-31.
[4] 江若尘,陈昌东,郑宇晨,等.上海流量型经济能级指数对标分析及发展思路[J].科学发展,2022(5):48-56.
JIANG R C, CHEN C D, ZHENG Y C, et al. Benchmarking analysis and development ideas of shanghai's flow-based economy energy level index [J]. Scientific Development, 2022 (5): 48-56.
[5] 吴英晗,李明达,胡枫.基于熵的多属性决策超网络重要节点识别方法[J].复杂系统与复杂性科学,2023,20(4):40-46.
WU Y H, LI M D, HU F. A multi-attribute decision-making method based on entropy to identify important nodes in hypernetworks [J]. Complex Systems and Complexity Science, 2023,20 (4): 40-46.
[6] 李世轩,杨和财,王海燕.基于能级-联动下丹凤葡萄酒产业发展规划研究[J].中国酿造,2022,41(8):252-256.
LI S X, YANG H C, WANG H Y. Development plan research of Danfeng wine industry based on energy level linkage [J]. China Brewing, 2022, 41 (8): 252-256.
[7] 李真. 金融能级与城市产业创新竞争力:城域分化与耦合协同 [J]. 财经研究, 2023, 49 (9): 19-33.
LI Z. Financial integration level and urban industrial innovation competitiveness: urban differentiation and coupling coordination [J] Journal of Finance and Economics, 2023, 49 (9): 19-33.
[8] 刘阳慧,杨山,范擎宇,等.长三角地区城市能级网络结构演变及影响因素研究[J].南京师大学报(自然科学版),2023,46(2):34-43.
LIU Y H, YANG S, FAN Q Y, et al. Study on the structural evolution and influencing factors of urban energy level network in the yangtze river delta region [J]. Journal of Nanjing Normal University (Natural Science Edition), 2023,46 (2): 34-43.
[9] 欧阳杰,李家慧.世界级城市群及其中心城市的枢纽能级分析——基于国际航空网络结构的研究[J].城市问题,2020(11):43-49.
OUYANG J, LI J H. Hub level analysis of world-class urban agglomerations and their central cities: a study based on international aviation network structure [J]. Urban Problems, 2020 (11): 43-49.
[10] 张自力,闫红蕾,张楠.股票网络、系统性风险与股票定价[J].经济学,2020,19(1):329-350.
ZHANG Z L, YAN H L, ZHANG N. Stock network, systematic risk and stock pricing implications [J]. China Economic, 2020,19 (1): 329-350.
[11] 李振洪. 西部陆海新通道经济联系网络空间特征及影响因素研究[D]. 重庆:重庆工商大学, 2023.
LI Z H. Research on the spatial characteristics and influencing factors of the economic connection network of the new land-sea corridor in the west [D]. Chongqing :Chongqing Technology and Business University, 2023.
[12] 仇怡,韩晚晚,吴建军. 长江中游城市群创新空间关联网络动态演变——基于社会网络分析法的研究 [J]. 湘潭大学学报(哲学社会科学版), 2021, 45(5): 80-86,107.
QIU Y, HAN W W, WU J J. Dynamic evolution of innovation space correlation network of urban agglomeration in the middle reaches of yangze river-an empirical research based on social network analysis [J] Journal of Xiangtan University (Philosophy and Social Sciences), 2021, 45(5): 80-86,107.
[13] 涂贵宇,潘文林,张天军.基于信息熵的超网络重要节点识别方法[DB/OL].[2024-02-21]. http://kns.cnki.net/kcms/detail/37.1402.N.20231204.0952.002.html.
TU G Y, PAN W L, ZHANG T J. Identification methods of important nodes based on information entropy in hypernetwork [DB/OL]. [2024-02-21]. http://kns.cnki.net/kcms/detail/37.1402.N.20231204.0952.002.html.
[14] 周丽娜,李发旭,巩云超等.基于K-shell的超网络关键节点识别方法[J].复杂系统与复杂性科学,2021,18(3):15-22.
ZHOU L N, LI F X, GONG Y C, et al. Identification methods of vital nodes based on k-shell in hypernetworks [J]. Complex Systems and Complexity Science, 2021,18(3): 15-22.
[15] WATTS D J, STROGATZ S H. Collective dynamics of small-world networks [J]. Nature, 1998, 393(6684): 440-442.
[16] 焦欢.对19个副省级及以上城市的城市能级测评[J].国家治理,2019(6):3-23.
JIAO H. Evaluation of urban energy levels in 19 sub-provincial and above cities [J]. Governance, 2019(6): 3-23.
[1] 丁旭艳, 江登英, 尹圆圆, 饶从军. 基于熵和双向投影的区间毕达哥拉斯模糊决策[J]. 复杂系统与复杂性科学, 2025, 22(1): 88-96.
[2] 吴英晗, 李明达, 胡枫. 基于熵的多属性决策超网络重要节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 40-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed