Please wait a minute...
文章检索
复杂系统与复杂性科学  2026, Vol. 23 Issue (1): 87-95    DOI: 10.13306/j.1672-3813.2026.01.011
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于节点影响因子和贡献因子的复杂网络重要节点识别
孙文静, 余路粉, 潘文林, 蓝春江
云南民族大学数学与计算机科学学院,昆明 650031
Identification of Important Nodes in Complex Networks Based on    Node Influence Factor and Contribution Factor
SUN Wenjing, YU Lufen, PAN Wenlin, LAN Chunjiang
School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650031, China
全文: PDF(2689 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对高聚集网络,提出一种新的识别复杂网络重要节点的方法KEC,该方法既考虑了节点及邻居节点的局部信息即影响因子又考虑了邻居节点对节点影响力的贡献度,提出了贡献因子。在8个真实网络中,利用SIR模型和蓄意攻击实验分析KEC与6个常用中心性在网络中的表现,最后利用Kendall-tau相关系数分析KEC与6个常用中心性计算节点值的相关性。结果表明:KEC能有效识别有影响力的节点集和提高网络的抗毁性,同时在8个真实网络中KEC与6个常用中心性的Kendall-tau相关性几乎均为正相关,说明KEC识别复杂网络重要节点是可行的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙文静
余路粉
潘文林
蓝春江
关键词 复杂网络重要节点识别局部信息贡献因子SIR模型抗毁性    
Abstract:For high aggregation networks, we proposed a new method KEC for identifying important nodes in complex networks, which considered both the local information of nodes and neighbors, that is, the influence factors, and the contribution degree of neighbors to the influence of nodes, and put forward the contribution factor. In eight real networks, the method used the SIR model and deliberate attack experiments to analyze the performance of KEC and six commonly used centrality. Finally, the method used the Kendall-tau correlation coefficient to analyze the correlation between the values of nodes calculated by KEC and six commonly used centrality. The results show that it is effective for KEC to identify influential node sets and improve the destruction resistance of networks, and the Kendall-tau correlation coefficients between KEC and six commonly used centrality are almost positively correlated in eight real networks, which shows that it is feasible for KEC to identify important nodes in complex networks.
Key wordscomplex network    identification of important nodes    local information    contribution factor    SIR model    destruction resistance
收稿日期: 2024-01-28      出版日期: 2026-02-13
ZTFLH:  O157.5  
  TP39  
基金资助:国家自然科学基金(62362071)
通讯作者: 潘文林(1972-),男,云南泸水人,博士,教授,主要研究方向为智能计算、软件工程、数据治理与数据工程、城市大脑与智慧城市。   
作者简介: 孙文静(1998-),女,山西大同人,硕士研究生,主要研究方向为智能计算、复杂网络。
引用本文:   
孙文静, 余路粉, 潘文林, 蓝春江. 基于节点影响因子和贡献因子的复杂网络重要节点识别[J]. 复杂系统与复杂性科学, 2026, 23(1): 87-95.
SUN Wenjing, YU Lufen, PAN Wenlin, LAN Chunjiang. Identification of Important Nodes in Complex Networks Based on    Node Influence Factor and Contribution Factor[J]. Complex Systems and Complexity Science, 2026, 23(1): 87-95.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2026.01.011      或      https://fzkx.qdu.edu.cn/CN/Y2026/V23/I1/87
[1] 杨凡.复杂网络重要节点识别及传播源定位方法的研究[D].甘肃:兰州大学, 2018.
YANG F. Research on vital nodes identification and propagation source location in complex networks[D]. Gansu: Lanzhou University, 2018.
[2] 徐翔.复杂网络中关键节点识别理论方法研究与应用[D].安徽:安徽工业大学, 2020.
XU X. Research and application of key node identification theory and method in complex networks[D]. Anhui: Anhui University of Technology, 2020.
[3] 杨国军.复杂网络关键节点识别方法综述[J].现代商贸工业, 2023, 44(12): 263-265.
YANG G J. A review of key node identification methods for complex networks[J]. Modern Business Trade Industry, 2023, 44(12): 263-265.
[4] 于咏平.面向社交网络重要节点的识别方法及应用研究[D].新疆:新疆财经大学, 2022.
YU Y P. Research on identification method and application of influential nodes in social network[D]. Xinjiang: Xinjiang University of Finance & Economics, 2022.
[5] 刘子彤,王威,丁国如,等.一种面向有权重通信网络的关键节点识别方法[J].数据采集与处理, 2023, 38(1): 51-62.
LIU Z T, WANG W, DING G R, et al. A key node identification approach for weighted communication networks[J]. Journal of Data Acquisition and Processing, 2023, 38(1): 51-62.
[6] 马小琦.城市道路交通网络关键节点识别方法研究[D].吉林:吉林大学, 2022.
MA X Q. Research on key node identification method of urban road traffic network[D]. Jilin: Jilin University, 2022.
[7] 王意.复杂电力网络的动力学行为及关键节点识别研究[D].广西:广西师范大学, 2018.
WANG Y. Study of the dynamic behavior and the key node identification on complex power networks[D]. Guangxi: Guangxi Normal University, 2018.
[8] LYU L, CHEN D, REN X L, et al. Vital nodes identification in complex networks[J]. Physics Reports, 2016, 650: 1-63.
[9] ZHANG Q, LI M, DU Y, et al. Local structure entropy of complex networks[DB/OL].[2023-12-20].http://arxiv.org/abs/1412.3910.
[10] RUHNAU B. Eigenvector-centrality—a node-centrality?[J]. Social Networks, 2000, 22(4): 357-365.
[11] ZHAO N, YANG S, WANG H, et al. A novel method to identify key nodes in complex networks based on degree and neighborhood information[J]. Applied Sciences, 2024, 14(2): 521.
[12] ZHOU F, LÜ L, MARIANI M S. Fast influencers in complex networks[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 74: 69-83.
[13] LÜ L, ZHOU T, ZHANG Q M, et al. The H-index of a network node and its relation to degree and coreness[J]. Nature Communications, 2016, 7(1): 10168.
[14] KITSAK M, GALLOS L K, HAVLIN S, et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6(11): 888-893.
[15] LIU J G, REN Z M, GUO Q. Ranking the spreading influence in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(18): 4154-4159.
[16] 谢丽霞,孙红红,杨宏宇,等.基于K-shell的复杂网络关键节点识别方法[J].清华大学学报(自然科学版), 2022, 62(5):849-861.
XIE L X, SUN H H, YANG H Y, et al. Key node recognition in complex networks based on the K-shell method[J]. Journal of Tsinghua University(Science and Technology) , 2022, 62(5): 849-861.
[17] 熊才权,古小惠,吴歆韵.基于K-shell位置和两阶邻居的复杂网络节点重要性评估方法[J].计算机应用研究, 2023, 40(3): 738-742.
XIONG C Q, GU X H, WU X Y. Evaluation method of node importance in complex networks based on K-shell position and neighborhood within two steps[J]. Application Research of Computers, 2023, 40(3): 738-742.
[18] LIU Y, WANG J, HE H, et al. Identifying important nodes affecting network security in complex networks[J]. International Journal of Distributed Sensor Networks, 2021, 17(2): 1550147721999285.
[19] MAJI G, NAMTIRTHA A, DUTTA A, et al. Influential spreaders identification in complex networks with improved K-shell hybrid method[J]. Expert Systems with Applications, 2020, 144: 113092.
[20] FREEMAN L C. A set of measures of centrality based on betweenness[J]. Sociometry, 1977: 35-41.
[21] ZHANG K, LI P, ZHU B, et al. Evaluation method for node importance in directed-weighted complex networks based on PageRank[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2013, 45(3): 429-434.
[22] YANG Y, WANG X, CHEN Y, et al. Identifying key nodes in complex networks based on global structure[J]. IEEE Access, 2020, 8: 32904-32913.
[23] BERAHMAND K, BOUYER A, SAMADI N. A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks[J]. Chaos, Solitons & Fractals, 2018, 110: 41-54.
[24] WANG Y, LI H, ZHANG L, et al. Identifying influential nodes in social networks: centripetal centrality and seed exclusion approach[J]. Chaos, Solitons & Fractals, 2022, 162: 112513.
[25] 李鹏,王世林,陈光武,等.基于改进的局部结构熵复杂网络重要节点挖掘[J].计算机应用, 2023, 43(4): 1109-1114.
LI P, WANG S L, CHEN G W, et al. Key node mining in complex network based on improved local structural entropy[J]. Journal of Computer Applications, 2023, 43(4): 1109-1114.
[26] LI P, WANG S, CHEN G, et al. Identifying key nodes in complex networks based on local structural entropy and clustering coefficient[J]. Mathematical Problems in Engineering, 2022, 2022(1):8928765.
[27] 张耀波,张胜,王雨萱,等.基于K-shell的复杂网络簇生长维数研究[DB/OL].[2024-04-18]. http://kns.cnki.net/kcms/detail/37.1402.N.20231206.1700.005.html.
ZHANG Y B, ZHANG S, WANG Y X, et al. Research on the cluster-growing dimension of complex networks based on K-shell[DB/OL]. [2024-04-18].http://kns.cnki.net/kcms/detail/37.1402.N.20231206.1700.005.html.
[28] WU Y, DONG A, REN Y, et al. Identify influential nodes in complex networks: A k-orders entropy-based method[J]. Physica A: Statistical Mechanics and Its Applications, 2023, 632: 129302.
[29] 王雅楠. 基于复杂网络结构的链路预测关键算法研究[D].北京:北京邮电大学, 2023.
WANG Y N. Research on key algorithms of link prediction based on complex network structure[D]. Beijing: Beijing University of Posts and Telecommunications, 2023.
[30] KEELING M J, EAMES K T D. Networks and epidemic models[J]. Journal of the Royal Society Interface, 2005, 2(4): 295-307.
[31] CASTELLANO C, PASTOR-SATORRAS R. Thresholds for epidemic spreading in networks[J]. Physical Review Letters, 2010, 105(21): 218701.
[32] 赵娜,柴焰明,尹春林,等.基于最大连通子图相对效能的相依网络鲁棒性分析[J].电子科技大学学报, 2021, 50(4): 627-633.
ZHAO N, CAI Y M, YIN C L, et al. Robustness analysis of interdependent networks based on the largest-component relative efficiency[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(4): 627-633.
[33] 郭明健,高岩.基于复杂网络理论的电力网络抗毁性分析[J].复杂系统与复杂性科学, 2022, 19(4): 1-6.
GUO M J, GAO Y. Invulnerability analysis of power network based on complex network [J]. Complex Systems and Complexity Science, 2022, 19(4): 1-6.
[34] YANG H, AN S. Critical nodes identification in complex networks[J]. Symmetry, 2020, 12(1): 123.
[35] KENDALL M G. A new measure of rank correlation[J]. Biometrika, 1938, 30(1/2): 81-93.
[36] ROSSI R, AHMED N. The network data repository with interactive graph analytics and visualization[DB/OL].[2023-10-10].https://doi.org/10.1609/aaai.v29i1.9277.
[37] NEWMAN M E J. Finding community structure in networks using the eigenvectors of matrices[J]. Physical Review E, 2006, 74(3): 036104.
[1] 户佐安, 杨江浩, 邓锦程. 考虑多元变量的世界航空网络综合鲁棒性研究[J]. 复杂系统与复杂性科学, 2026, 23(1): 60-69.
[2] 牟奇锋, 李晓倩. 基于邻接矩阵的复杂网络演化融合迭代方法[J]. 复杂系统与复杂性科学, 2026, 23(1): 79-86.
[3] 孙小慧, 刘毅, 米玉梅, 吕凯. 韧性视角下城市地铁与常规公交网络关键站点及线路识别[J]. 复杂系统与复杂性科学, 2026, 23(1): 26-36.
[4] 聂廷远, 王艳伟, 聂晶晶, 刘鹏飞. 基于注意力机制和复杂网络的FPGA可布性预测[J]. 复杂系统与复杂性科学, 2026, 23(1): 53-59.
[5] 周青, 李依函, 陈文冲. “互联网+”企业创新生态系统网络演化分析[J]. 复杂系统与复杂性科学, 2025, 22(4): 1-7.
[6] 卢新彪, 刘泽诚, 陈贵允, 杨铁流, 高兴. 基于图卷积网络的复杂网络能控性提升方法[J]. 复杂系统与复杂性科学, 2025, 22(4): 24-28.
[7] 韩世翔, 闫光辉, 裴华艳. 复杂网络上双向免疫对传染病传播的影响[J]. 复杂系统与复杂性科学, 2025, 22(4): 55-62.
[8] 章浩淳, 寇博潇, 张泰杰, 唐智慧. 基于Granger Causality的滑坡机理网络客观权值确定方法[J]. 复杂系统与复杂性科学, 2025, 22(4): 63-70.
[9] 陶昭, 侯忠生. 复杂网络的无模型自适应牵制控制[J]. 复杂系统与复杂性科学, 2025, 22(2): 120-127.
[10] 李伟莎, 王淑良, 宋博. 基于强化学习风电并网策略下的韧性分析[J]. 复杂系统与复杂性科学, 2025, 22(2): 128-134.
[11] 张明磊, 宋玉蓉, 曲鸿博. 基于图注意力机制的复杂网络关键节点识别[J]. 复杂系统与复杂性科学, 2025, 22(2): 113-119.
[12] 张琦, 汪小帆. 复杂网络观点动力学分析与干预若干研究进展[J]. 复杂系统与复杂性科学, 2025, 22(2): 31-44.
[13] 胡福年, 杨伟丹, 陈军. 基于关键节点的电力信息物理系统鲁棒性评估[J]. 复杂系统与复杂性科学, 2025, 22(1): 43-49.
[14] 张耀波, 张胜, 王雨萱, 熊聪源. 基于K-shell的复杂网络簇生长维数研究[J]. 复杂系统与复杂性科学, 2025, 22(1): 11-17.
[15] 詹秀秀, 叶涛, 刘闯, 刘雪梅. 农产品贸易网络中国家影响力分析与研究[J]. 复杂系统与复杂性科学, 2025, 22(1): 26-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed