Please wait a minute...
文章检索
复杂系统与复杂性科学  2026, Vol. 23 Issue (1): 53-59    DOI: 10.13306/j.1672-3813.2026.01.007
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于注意力机制和复杂网络的FPGA可布性预测
聂廷远, 王艳伟, 聂晶晶, 刘鹏飞
青岛理工大学信息与控制工程学院,山东 青岛 266520
Routability Prediction for FPGA Design Based on Complex Networks and Attention Mechanism
NIE Tingyuan, WANG Yanwei, NIE Jingjing, LIU Pengfei
School of Information & Control Engineering, Qingdao University of Technology, Qingdao 266520, China
全文: PDF(1626 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 鉴于FPGA可布性预测对于解决物理设计的优化的重要意义,提出基于复杂网络和CBAM-CNN的FPGA可布性预测模型,在布局阶段提取与电路拥塞相关的电路特征和复杂网络特征并映射为RGB图像,引入注意力机制增强特征的重要性。实验结果表明预测准确度为98.03%,精确度为98.3%,灵敏度为98.3%,特异性为97.67%,Matthews相关系数为93.75%;复杂网络特征在FPGA可布性预测的重要性依次为度、强度、特征向量和介数。证明了复杂网络特征在FPGA可布性预测中的有效性和重要性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
聂廷远
王艳伟
聂晶晶
刘鹏飞
关键词 FPGA可布性复杂网络机器学习卷积神经网络注意力机制    
Abstract:FPGA routability prediction is of great significance for solving the optimization of physical design. We propose an FPGA routability prediction model based on complex networks and CBAM-CNN. During the placement phase, we extract circuit features and complex network features related to circuit congestion and map them to RGB images. We introduce an attention mechanism to enhance the importance of features. The experimental results show that the prediction accuracy is 98.03%, precision is 98.3%, sensitivity is 98.3%, specificity is 97.67%, and the Matthews correlation coefficient is 93.75%. The importance of complex network features in FPGA routability prediction is ranked in order of degree, strength, eigenvector, and betweenness. This proves the effectiveness and importance of complex network features in predicting FPGA routability.
Key wordsFPGA routability    complex networks    machine learning    convolutional neural network    attention mechanism
收稿日期: 2023-11-01      出版日期: 2026-02-13
ZTFLH:  TP391  
  N94  
基金资助:国家自然科学基金(61572269);山东省自然科学基金(ZR2021MF101)
作者简介: 聂廷远(1971-),男,山东青岛人,博士,教授,主要研究方向为VLSI设计优化、IP保护技术、复杂网络、机器学习。
引用本文:   
聂廷远, 王艳伟, 聂晶晶, 刘鹏飞. 基于注意力机制和复杂网络的FPGA可布性预测[J]. 复杂系统与复杂性科学, 2026, 23(1): 53-59.
NIE Tingyuan, WANG Yanwei, NIE Jingjing, LIU Pengfei. Routability Prediction for FPGA Design Based on Complex Networks and Attention Mechanism[J]. Complex Systems and Complexity Science, 2026, 23(1): 53-59.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2026.01.007      或      https://fzkx.qdu.edu.cn/CN/Y2026/V23/I1/53
[1] MA Y, ZENG X, YU B. Methodologies for layout decomposition and mask optimization: a systematic review[C]// IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC). Abu Dhabi: IEEE, 2017: 1-6.
[2] BOZORGZADEH E, MEMIK S, YANG X, et al. Routability-driven packing: metrics and algorithms for cluster-based FPGAs[J]. Journal of Circuits, Systems, and Computers, 2005, 13(1): 77-100.
[3] WOOD R, RUTENBAR R. FPGA routing and routability estimation via Boolean satisfiability[J]. IEEE Transactions on Very Large Scale Intergation (VLSI) Systems, 1998, 6(2): 222-231.
[4] QI Z, CAI Y, ZHOU Q. Accurate prediction of detailed routing congestion using supervised data learning[C]// Proceedings of the IEEE International Conference on Computer Design. Korea (South): IEEE, 2014: 97-103.
[5] ZHOU Q, WANG X, QI Z, et al. An accurate detailed routing routability prediction model in placement[C]// Proceedings of the Asia Symposium on Quality Electronic Design (ASQED’15). Kuala Lumpur: IEEE, 2015: 119-122.
[6] CHAN W T J, DU Y, KAHNG A B, et al. BEOL stack-aware routability prediction from placement using data mining techniques[C]// Proceedings of the International Conference on Computer Design (ICCD’16). Scottsdale: IEEE, 2016: 41-48.
[7] XIE Z Y, HUANG Y H, FANG G Q, et al. RouteNet: routability prediction for mixed-size designs using convolutional neural network[C]// IEEE/ACM International Conference on Computer-Aided Design (ICCAD). San Diego: IEEE, 2018: 1-8.
[8] AL-HYARI A, ABUOWAIMER Z, MARTIN T, et al. Novel congestion-estimation and routability-prediction methods based on machine learning for modern FPGAs[J]. ACM Transactions on Reconfigurable Technology and Systems (TRETS), 2019, 12(3): 1-25.
[9] MARTIN T, SHAWKI A, GARY G. Effective machine-learning models for predicting routability during FPGA placement[C]// ACM/IEEE 3rd Workshop on Machine Learning for CAD (MLCAD). Raleigh: IEEE, 2021: 1-6.
[10] SZENTIMREY H, AL-HYARI A, FOXCROFT J, et al. Machine learning for congestion management and routability prediction within FPGA placement[J]. ACM Transactions on Design Automation of Electronic Systems (TODAES), 2020, 25(5): 1-25.
[11] GUNTER A D, WILTON S J. A machine learning approach for predicting the difficulty of FPGA routing problems[C]// IEEE 31st Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). Marina Del Rey: IEEE, 2023: 63-74.
[12] ALHYARI A, SHAMLI A, ABUOWAIMER Z, et al. A deep learning framework to predict routability for FPGA circuit placement[C]// International Conference on Field Programmable Logic and Applications. New York: ACM, 2019: 1-8.
[13] 董亚盼,高陈强,谌放,等.基于注意力机制的红外小目标检测方法[J].重庆邮电大学学报(自然科学版),2023,35(2):219-226.
DONG Y P, GAO C Q, CHEN F, et al. Infrared small target detection method based on attention mechanism[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2023, 35(2): 219-226.
[14] 郭明健,高岩.基于复杂网络理论的电力网络抗毁性分析[J].复杂系统与复杂性科学,2022,19(4):1-6.
GUO M J, GAO Y. Invulnerability analysis of power network based on complex network[J]. Complex Systems and Complexity Science, 2022, 19(4): 1-6.
[15] 郑军,周海平.基于复杂网络理论的大型电路分析与优化[J].计算机工程,2011,37(15):283-285.
ZHENG J, ZHOU H P. Analysis and optimization of large-scale circuit based on complex network theory[J]. Computer Engineering, 2011, 37(15): 283-285.
[16] WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]// Proceedings of the European Conference on Computer Vision(ECCV). Munich: Springer, 2018: 3-19.
[17] GREWAL G, AREIBI S. Guelph FPGA CAD Group [EB/OL]. (2017-03-17) [2023-10-26]. http://fpga.socs.uoguelph.ca/.
[18] GREWAL G,AREIBI S,WESTRIK M,et al. Automatic flow selection and quality-of-result estimation for FPGA placement[C]// Proceedings of the 24th Reconfigurable Architectures Workshop. Lake Buena Vista: IEEE, 2017: 115-123.
[19] LI W X, DHAR S, PAN D. UTPlaceF:a routability driven FPGA placer with physical and congestion aware packing[J]. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, 2018, 37(4): 869-882.
[20] MAAROUF D, ALHYARI A, ABUOWAIMER Z, et al. A machine learning congestion estimation model for modern FPGAs[C]// IEEE Int’l Conference on Field Programmable Logic and Applications. Dublin: IEEE, 2018: 1-8.
[21] NIE T Y, FAN B, WANG Z H. Complexity and robustness of weighted circuit network of placement[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 598: 127346.
[22] AL-HYARI A, SZENTIMREY H, SHAMLI A, et al. A deep learning framework to predict routability for FPGA circuit placement[J]. ACM Transactions on Reconfigurable Technology and Systems (TRETS), 2021, 14(3): 1-28.
[1] 户佐安, 杨江浩, 邓锦程. 考虑多元变量的世界航空网络综合鲁棒性研究[J]. 复杂系统与复杂性科学, 2026, 23(1): 60-69.
[2] 牟奇锋, 李晓倩. 基于邻接矩阵的复杂网络演化融合迭代方法[J]. 复杂系统与复杂性科学, 2026, 23(1): 79-86.
[3] 孙小慧, 刘毅, 米玉梅, 吕凯. 韧性视角下城市地铁与常规公交网络关键站点及线路识别[J]. 复杂系统与复杂性科学, 2026, 23(1): 26-36.
[4] 孙文静, 余路粉, 潘文林, 蓝春江. 基于节点影响因子和贡献因子的复杂网络重要节点识别[J]. 复杂系统与复杂性科学, 2026, 23(1): 87-95.
[5] 周青, 李依函, 陈文冲. “互联网+”企业创新生态系统网络演化分析[J]. 复杂系统与复杂性科学, 2025, 22(4): 1-7.
[6] 卢新彪, 刘泽诚, 陈贵允, 杨铁流, 高兴. 基于图卷积网络的复杂网络能控性提升方法[J]. 复杂系统与复杂性科学, 2025, 22(4): 24-28.
[7] 韩世翔, 闫光辉, 裴华艳. 复杂网络上双向免疫对传染病传播的影响[J]. 复杂系统与复杂性科学, 2025, 22(4): 55-62.
[8] 章浩淳, 寇博潇, 张泰杰, 唐智慧. 基于Granger Causality的滑坡机理网络客观权值确定方法[J]. 复杂系统与复杂性科学, 2025, 22(4): 63-70.
[9] 刘晓燕, 赵曦雨, 单晓红, 谢桂生. 集成电路产业创新合作关系瓦解因素探析[J]. 复杂系统与复杂性科学, 2025, 22(4): 29-36.
[10] 赵文炎, 钟诚, 田殿雄, 卢泽钰, 李勇. 基于混合卷积神经网络特征增强的目标识别算法[J]. 复杂系统与复杂性科学, 2025, 22(3): 65-72.
[11] 陶昭, 侯忠生. 复杂网络的无模型自适应牵制控制[J]. 复杂系统与复杂性科学, 2025, 22(2): 120-127.
[12] 李伟莎, 王淑良, 宋博. 基于强化学习风电并网策略下的韧性分析[J]. 复杂系统与复杂性科学, 2025, 22(2): 128-134.
[13] 张明磊, 宋玉蓉, 曲鸿博. 基于图注意力机制的复杂网络关键节点识别[J]. 复杂系统与复杂性科学, 2025, 22(2): 113-119.
[14] 张琦, 汪小帆. 复杂网络观点动力学分析与干预若干研究进展[J]. 复杂系统与复杂性科学, 2025, 22(2): 31-44.
[15] 胡福年, 杨伟丹, 陈军. 基于关键节点的电力信息物理系统鲁棒性评估[J]. 复杂系统与复杂性科学, 2025, 22(1): 43-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed