Abstract:To efficiently address the continuous splitting and recombination of complex network topological structures and reduce computational resource consumption, a method called adjacency matrix fusion iteration is proposed. The complex network aggregation is achieved through the fusion of adjacency matrix row-column vectors, the steps and forms of network evolution fusion and splitting iteration are defined, and empirical analysis is carried out as an example of constructing a flight guarantee network. Finally, the fusion splitting process of the directed network is simulated, and time and space complexity indicators are introduced to verify the effectiveness of the method. The results show that the proposed method is consistent with the evolutionary generation process of the empirical network topology, and its arithmetic complexity is lower than that of other methods, which is especially suitable for the study of directed dense networks.
牟奇锋, 李晓倩. 基于邻接矩阵的复杂网络演化融合迭代方法[J]. 复杂系统与复杂性科学, 2026, 23(1): 79-86.
MOU Qifeng, LI Xiaoqian. A Convergence Iterative Method for the Evolution of Complex Networks Based on Adjacency Matrices[J]. Complex Systems and Complexity Science, 2026, 23(1): 79-86.
[1] 陈谊,张梦录,万玉钗.图的表示与可视化方法综述[J].系统仿真学报,2020,32(7):1232-1243. CHEN Y, ZHANG M L, WAN Y C. A survey on graph representation and visualization techniques[J]. Journal of System Simulation, 2020,32(7):1232-1243. [2] ARLEO A, DIDIMO W, LIOTTA G, et al. A distributed multilevel force-directed algorithm[J]. IEEE Transactions on Parallel and Distributed Systems, 2019, 30(4):754-765. [3] CHEN W, GUO F Z, HAN D M, et al. Structure-based suggestive exploration: a new approach for effective exploration of large networks[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(1):555-565. [4] SHI C, HU B B, ZHAO W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(2):357-370. [5] SCABINI L F S, CONDORI R H M, GONCALVES W N, et al. Multilayer complex network descriptors for color-texture characterization[J]. Information Sciences: an International Journal, 2019, 491:30-47. [6] 刘金涛,郑伟,李克平,等.基于复杂网络理论的高铁信号系统危险致因评价方法[J].铁道学报,2021,43(7):87-94. LIU J T, ZHENG W, LI K P, et al. Complex network theory-based evaluation method for hazard causal factors of high-speed railway signaling systems[J]. Journal of the China Railway Society,2021,43(7):87-94. [7] 张力铭. 基于复杂网络的航班保障进程控制策略研究[D].德阳: 中国民用航空飞行学院,2022. ZHANG L M. Research on the control strategy of flight guarantee processes based on complex network[D]. Deyang: Civil Aviation Flight University of China,2022. [8] ALBERT-LASZLO B.巴拉巴西网络科学[M].河南: 河南科学技术出版社,2020. [9] 李美. 两类加权自相似网络上的随机游走问题[D].南京: 南京财经大学,2023. LI M. Random walk problems on two classes of weighted self-similar networks[D]. Nanjing: Nanjing University of Finance and Economics,2023. [10] 王海英,黄强,李传涛,等.图论算法及其MATLAB实现[M].北京: 北京航空航天大学出版社,2010. [11] NEIVA, M B, BRUNO O M. Exploring ordered patterns in the adjacency matrix for improving machine learning on complex networks[J]. Physica A: Statistical Mechanics and Its Applications,2023,626:129086. [12] XU Z, FANG M, SU H, et al. Asynchronous synchronization of complex networks with switched adjacent matrices[J]. Journal of the Franklin Institute,2019,356(8):4677-4689. [13] GHONIEM M, FEKETE J D, CASTAGLIOLA P. On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis[J]. Information Visualization, 2005, 4(2):114-135. [14] ALONSO L, MENDEZ-BERMUDEZ J A, GONZALEZ-MELENDREZ A, et al. Weighted random-geometric and random-rectangular graphs: spectral and eigenfunction properties of the adjacency matrix[J]. Journal of Complex Networks, 2018,6(5):753-766. [15] CAROLINA N, MARC S, ALEXANDER L. Juniper: a tree+ table approach to multivariate graph visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(1): 544-554. [16] 王帅,李婷.基于0特征值的复杂网络结构可控与优化研究[J].火力与指挥控制,2021,46(6):90-95. WANG S, LI T. Research on network structure control and optimization based on “0” eigenvalue[J]. Fire Control & Command Control,2021,46(6):90-95. [17] 刘中舟,胡文斌,许平华,等.动态基因调控网演化分析[J].软件学报,2020,31(11):3334-3350. LIU Z Z, HU W B, XU P H, et al. Dynamic gene regulatory network evolution analysis[J]. Journal of Software,2020,31(11):3334-3350. [18] 丁超,赵海,司帅宗,等.正常衰老的人脑功能网络演化模型[J].计算机应用,2019,39(4):963-971. DING C, ZHAO H, SI S Z, et al. Evolution model of normal aging human brain functional network[J]. Journal of Computer Applications,2019,39(4):963-971. [19] 陆阳阳.社交网络中重叠社区发现及其演化算法的研究[D].重庆: 重庆邮电大学,2020. LU Y Y. Research on overlapping community detection and its evolutionary algorithms in social networks[D]. Chongqing: Chongqing University of Posts and Telecommunications,2020. [20] 杨艺璇.基于形式概念分析的在线社交网络极大派系检测和演化算法研究[D].西安:陕西师范大学,2020. YANG Y X. A study of maximal clique detection and evolutionary algorithms for online social networks based on formal concept analysis[D]. Xian: Shaanxi Normal University,2020. [21] 黄超,刘苏,吕颖.基于网络演化方法的城市群城际铁路线网规划模型研究[J].交通运输系统工程与信息,2016,16(1):123-128. HUANG C, LIU S, LV Y. Network evolution-based planning model for intercity railway network within urban agglomeration[J]. Journal of Transportation Systems Engineering and Information Technology, 2016,16(1):123-128. [22] 徐凤,朱金福,苗建军,等.空铁复合网络双阶段变式演化模型及仿真[J].系统仿真学报,2018,30(4):1369-1375. XU F, ZHU J F, MIAO J J, et al. Simulation of two stages-variant growth evolution model of high-speed railway and civil aviation compound network [J].Journal of System Simulation,2018,30(4):1369-1375. [23] HECTOR R, MATTIAS V, AUGUSTO V. A multilayered block network model to forecast large dynamic transportation graphs: an application to US air transport[J]. Transportation Research Part C: Emerging Technologies, 2022, 137:103556. [24] XU W, XIN F, YUAN G. Analysis of the structure and time-series evolution of knowledge label network from a complex perspective[J]. Aslib Journal of Information Management,2023,75(6):1056-1078. [25] ZHAO J, LI L, XU Z, et al. Full-scale distribution system topology identification using Markov Random Field[J]. IEEE Transactions on Smart Grid,2020,11(6):4714-4726.