Please wait a minute...
文章检索
复杂系统与复杂性科学  2026, Vol. 23 Issue (1): 79-86    DOI: 10.13306/j.1672-3813.2026.01.010
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于邻接矩阵的复杂网络演化融合迭代方法
牟奇锋, 李晓倩
中国民用航空飞行学院机场学院,四川 广汉 618307
A Convergence Iterative Method for the Evolution of Complex Networks Based on Adjacency Matrices
MOU Qifeng, LI Xiaoqian
College of Airport, Civil Aviation Flight University of China, Guanghan 618307, China
全文: PDF(2777 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为更高效地处理复杂网络拓扑结构的连续拆分与重组,降低算力消耗,提出邻接矩阵融合迭代方法。通过邻接矩阵行列向量融合实现复杂网络聚合,定义网络演化融合拆分迭代步骤及形式,并以构建航班保障网络为例进行实证分析。最后,模拟有向网络的融合拆分过程,引入时间、空间复杂度指标验证该方法的有效性。结果表明,所提方法与实证网络拓扑结构的演化生成过程一致,其运算复杂度较其他方法更低,尤其适用于有向稠密网络研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牟奇锋
李晓倩
关键词 复杂网络拓扑结构连续拆分与重组邻接矩阵融合迭代航班保障网络稠密网络    
Abstract:To efficiently address the continuous splitting and recombination of complex network topological structures and reduce computational resource consumption, a method called adjacency matrix fusion iteration is proposed. The complex network aggregation is achieved through the fusion of adjacency matrix row-column vectors, the steps and forms of network evolution fusion and splitting iteration are defined, and empirical analysis is carried out as an example of constructing a flight guarantee network. Finally, the fusion splitting process of the directed network is simulated, and time and space complexity indicators are introduced to verify the effectiveness of the method. The results show that the proposed method is consistent with the evolutionary generation process of the empirical network topology, and its arithmetic complexity is lower than that of other methods, which is especially suitable for the study of directed dense networks.
Key wordscomplex network    topological structures    continuous splitting and recombination    adjacency matrix fusion iteration    flight guarantee network    directed dense networks
收稿日期: 2024-03-17      出版日期: 2026-02-13
ZTFLH:  O231.5  
  N94  
基金资助:中央高校基本科研业务费专项资金(ZHMH2022-002);四川省科技厅项目(2022YFG0196)
通讯作者: 李晓倩(2000-),女,山东聊城人,硕士研究生,主要研究方向为机场运行管理。   
作者简介: 牟奇锋(1972-),男,重庆万州人,博士,教授,主要研究方向为机场规划与设计、机场运行。
引用本文:   
牟奇锋, 李晓倩. 基于邻接矩阵的复杂网络演化融合迭代方法[J]. 复杂系统与复杂性科学, 2026, 23(1): 79-86.
MOU Qifeng, LI Xiaoqian. A Convergence Iterative Method for the Evolution of Complex Networks Based on Adjacency Matrices[J]. Complex Systems and Complexity Science, 2026, 23(1): 79-86.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2026.01.010      或      https://fzkx.qdu.edu.cn/CN/Y2026/V23/I1/79
[1] 陈谊,张梦录,万玉钗.图的表示与可视化方法综述[J].系统仿真学报,2020,32(7):1232-1243.
CHEN Y, ZHANG M L, WAN Y C. A survey on graph representation and visualization techniques[J]. Journal of System Simulation, 2020,32(7):1232-1243.
[2] ARLEO A, DIDIMO W, LIOTTA G, et al. A distributed multilevel force-directed algorithm[J]. IEEE Transactions on Parallel and Distributed Systems, 2019, 30(4):754-765.
[3] CHEN W, GUO F Z, HAN D M, et al. Structure-based suggestive exploration: a new approach for effective exploration of large networks[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(1):555-565.
[4] SHI C, HU B B, ZHAO W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(2):357-370.
[5] SCABINI L F S, CONDORI R H M, GONCALVES W N, et al. Multilayer complex network descriptors for color-texture characterization[J]. Information Sciences: an International Journal, 2019, 491:30-47.
[6] 刘金涛,郑伟,李克平,等.基于复杂网络理论的高铁信号系统危险致因评价方法[J].铁道学报,2021,43(7):87-94.
LIU J T, ZHENG W, LI K P, et al. Complex network theory-based evaluation method for hazard causal factors of high-speed railway signaling systems[J]. Journal of the China Railway Society,2021,43(7):87-94.
[7] 张力铭. 基于复杂网络的航班保障进程控制策略研究[D].德阳: 中国民用航空飞行学院,2022.
ZHANG L M. Research on the control strategy of flight guarantee processes based on complex network[D]. Deyang: Civil Aviation Flight University of China,2022.
[8] ALBERT-LASZLO B.巴拉巴西网络科学[M].河南: 河南科学技术出版社,2020.
[9] 李美. 两类加权自相似网络上的随机游走问题[D].南京: 南京财经大学,2023.
LI M. Random walk problems on two classes of weighted self-similar networks[D]. Nanjing: Nanjing University of Finance and Economics,2023.
[10] 王海英,黄强,李传涛,等.图论算法及其MATLAB实现[M].北京: 北京航空航天大学出版社,2010.
[11] NEIVA, M B, BRUNO O M. Exploring ordered patterns in the adjacency matrix for improving machine learning on complex networks[J]. Physica A: Statistical Mechanics and Its Applications,2023,626:129086.
[12] XU Z, FANG M, SU H, et al. Asynchronous synchronization of complex networks with switched adjacent matrices[J]. Journal of the Franklin Institute,2019,356(8):4677-4689.
[13] GHONIEM M, FEKETE J D, CASTAGLIOLA P. On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis[J]. Information Visualization, 2005, 4(2):114-135.
[14] ALONSO L, MENDEZ-BERMUDEZ J A, GONZALEZ-MELENDREZ A, et al. Weighted random-geometric and random-rectangular graphs: spectral and eigenfunction properties of the adjacency matrix[J]. Journal of Complex Networks, 2018,6(5):753-766.
[15] CAROLINA N, MARC S, ALEXANDER L. Juniper: a tree+ table approach to multivariate graph visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 25(1): 544-554.
[16] 王帅,李婷.基于0特征值的复杂网络结构可控与优化研究[J].火力与指挥控制,2021,46(6):90-95.
WANG S, LI T. Research on network structure control and optimization based on “0” eigenvalue[J]. Fire Control & Command Control,2021,46(6):90-95.
[17] 刘中舟,胡文斌,许平华,等.动态基因调控网演化分析[J].软件学报,2020,31(11):3334-3350.
LIU Z Z, HU W B, XU P H, et al. Dynamic gene regulatory network evolution analysis[J]. Journal of Software,2020,31(11):3334-3350.
[18] 丁超,赵海,司帅宗,等.正常衰老的人脑功能网络演化模型[J].计算机应用,2019,39(4):963-971.
DING C, ZHAO H, SI S Z, et al. Evolution model of normal aging human brain functional network[J]. Journal of Computer Applications,2019,39(4):963-971.
[19] 陆阳阳.社交网络中重叠社区发现及其演化算法的研究[D].重庆: 重庆邮电大学,2020.
LU Y Y. Research on overlapping community detection and its evolutionary algorithms in social networks[D]. Chongqing: Chongqing University of Posts and Telecommunications,2020.
[20] 杨艺璇.基于形式概念分析的在线社交网络极大派系检测和演化算法研究[D].西安:陕西师范大学,2020.
YANG Y X. A study of maximal clique detection and evolutionary algorithms for online social networks based on formal concept analysis[D]. Xian: Shaanxi Normal University,2020.
[21] 黄超,刘苏,吕颖.基于网络演化方法的城市群城际铁路线网规划模型研究[J].交通运输系统工程与信息,2016,16(1):123-128.
HUANG C, LIU S, LV Y. Network evolution-based planning model for intercity railway network within urban agglomeration[J]. Journal of Transportation Systems Engineering and Information Technology, 2016,16(1):123-128.
[22] 徐凤,朱金福,苗建军,等.空铁复合网络双阶段变式演化模型及仿真[J].系统仿真学报,2018,30(4):1369-1375.
XU F, ZHU J F, MIAO J J, et al. Simulation of two stages-variant growth evolution model of high-speed railway and civil aviation compound network [J].Journal of System Simulation,2018,30(4):1369-1375.
[23] HECTOR R, MATTIAS V, AUGUSTO V. A multilayered block network model to forecast large dynamic transportation graphs: an application to US air transport[J]. Transportation Research Part C: Emerging Technologies, 2022, 137:103556.
[24] XU W, XIN F, YUAN G. Analysis of the structure and time-series evolution of knowledge label network from a complex perspective[J]. Aslib Journal of Information Management,2023,75(6):1056-1078.
[25] ZHAO J, LI L, XU Z, et al. Full-scale distribution system topology identification using Markov Random Field[J]. IEEE Transactions on Smart Grid,2020,11(6):4714-4726.
[1] 户佐安, 杨江浩, 邓锦程. 考虑多元变量的世界航空网络综合鲁棒性研究[J]. 复杂系统与复杂性科学, 2026, 23(1): 60-69.
[2] 孙小慧, 刘毅, 米玉梅, 吕凯. 韧性视角下城市地铁与常规公交网络关键站点及线路识别[J]. 复杂系统与复杂性科学, 2026, 23(1): 26-36.
[3] 聂廷远, 王艳伟, 聂晶晶, 刘鹏飞. 基于注意力机制和复杂网络的FPGA可布性预测[J]. 复杂系统与复杂性科学, 2026, 23(1): 53-59.
[4] 孙文静, 余路粉, 潘文林, 蓝春江. 基于节点影响因子和贡献因子的复杂网络重要节点识别[J]. 复杂系统与复杂性科学, 2026, 23(1): 87-95.
[5] 周青, 李依函, 陈文冲. “互联网+”企业创新生态系统网络演化分析[J]. 复杂系统与复杂性科学, 2025, 22(4): 1-7.
[6] 卢新彪, 刘泽诚, 陈贵允, 杨铁流, 高兴. 基于图卷积网络的复杂网络能控性提升方法[J]. 复杂系统与复杂性科学, 2025, 22(4): 24-28.
[7] 韩世翔, 闫光辉, 裴华艳. 复杂网络上双向免疫对传染病传播的影响[J]. 复杂系统与复杂性科学, 2025, 22(4): 55-62.
[8] 章浩淳, 寇博潇, 张泰杰, 唐智慧. 基于Granger Causality的滑坡机理网络客观权值确定方法[J]. 复杂系统与复杂性科学, 2025, 22(4): 63-70.
[9] 陶昭, 侯忠生. 复杂网络的无模型自适应牵制控制[J]. 复杂系统与复杂性科学, 2025, 22(2): 120-127.
[10] 李伟莎, 王淑良, 宋博. 基于强化学习风电并网策略下的韧性分析[J]. 复杂系统与复杂性科学, 2025, 22(2): 128-134.
[11] 张明磊, 宋玉蓉, 曲鸿博. 基于图注意力机制的复杂网络关键节点识别[J]. 复杂系统与复杂性科学, 2025, 22(2): 113-119.
[12] 张琦, 汪小帆. 复杂网络观点动力学分析与干预若干研究进展[J]. 复杂系统与复杂性科学, 2025, 22(2): 31-44.
[13] 胡福年, 杨伟丹, 陈军. 基于关键节点的电力信息物理系统鲁棒性评估[J]. 复杂系统与复杂性科学, 2025, 22(1): 43-49.
[14] 张耀波, 张胜, 王雨萱, 熊聪源. 基于K-shell的复杂网络簇生长维数研究[J]. 复杂系统与复杂性科学, 2025, 22(1): 11-17.
[15] 詹秀秀, 叶涛, 刘闯, 刘雪梅. 农产品贸易网络中国家影响力分析与研究[J]. 复杂系统与复杂性科学, 2025, 22(1): 26-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed