Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (2): 120-127    DOI: 10.13306/j.1672-3813.2025.02.015
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
复杂网络的无模型自适应牵制控制
陶昭, 侯忠生
青岛大学自动化学院,山东 青岛 266071
Model Free Adaptive Pinning Control for Complex Network
TAO Zhao, HOU Zhongsheng
School of Automation, Qingdao University, Qingdao 266071, China
全文: PDF(2016 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对复杂网络结构复杂、难以建模、控制器设计困难等问题,提出了对带有未知非线性耦合复杂网络的无模型自适应牵制控制方案。首先选取牵制控制节点,并基于受控节点上测量得到的输入输出数据对受控网络未知动力学模型作动态线性化数据建模,然后在最小方差准则下推导出相应控制器,从而设计出完全分布式的牵制控制方案。该方案设计仅需网络的输入输出数据而不依赖于复杂网络的模型,是一种数据驱动的牵制控制方法。同步稳定性结论则是基于简约定理、压缩映射和虚拟控制三种方法相结合得到的。仿真结果表明,该方案能够通过牵制控制网络中的少数节点,有效地驱动网络中的所有节点达到同步。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陶昭
侯忠生
关键词 复杂网络牵制控制无模型自适应控制kuramoto网络    
Abstract:For the difficulties of modeling and designing proper controllers for complex network control problems, a model free adaptive control based pinning scheme is proposed to control complex network with unknown and nonlinear coupled relationship in this paper. Firstly, a dynamical linearization model is built based on input/output data of selected pinning node, then a distributed pinning scheme is proposed under minimum variance estimation criterion. This scheme is a data-driven control method because it is designed only with I/O data of pinned nodes instead of network model. The stability analysis for the synchronization error is based on the reduction theorem, contraction mapping method and virtual control. The simulation results demonstrate that the proposed pinning scheme can drive all nodes in network to synchronization states by only control the pinned nodes in network.
Key wordscomplex network    pinning control    model-free adaptive control    kuramoto network
收稿日期: 2023-10-11      出版日期: 2025-06-03
ZTFLH:  TB13  
  TP18  
基金资助:国家自然科学基金(62373206);青岛大学系统科学+联合研究项目(XT2024101)
通讯作者: 侯忠生(1962),男,黑龙江绥化人,博士,教授,主要研究方向为数据驱动控制、迭代学习、智能交通系统等。   
作者简介: 陶昭(1997),男,湖南岳阳人,硕士,主要研究方向为数据驱动控制和复杂网络。
引用本文:   
陶昭, 侯忠生. 复杂网络的无模型自适应牵制控制[J]. 复杂系统与复杂性科学, 2025, 22(2): 120-127.
TAO Zhao, HOU Zhongsheng. Model Free Adaptive Pinning Control for Complex Network[J]. Complex Systems and Complexity Science, 2025, 22(2): 120-127.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.02.015      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I2/120
[1] ADAMIC L A, HUBERMAN B A, BARABASI A L, ALBERT R, and BIANCONI G. Power-law distribution of the world wide web[J]. Science, 2000, 287(5461): 2115.
[2] GUO M, XIA M, CHEN Q. A review of regional energy internet in smart city from the perspective of energy community[J]. Energy Reports, 2022, 8: 161182.
[3] GIRVAN M, NEWMAN M. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 12: 99.
[4] WANG X, CHEN G. Pinning control of scale-free dynamical networks[J]. Physica A: Statistical Mechanics and Its Applications, 2002, 310(3/4): 521531.
[5] LI X, WANG X, CHEN G. Pinning a complex dynamical network to its equilibrium[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2004, 51(10): 20742087.
[6] MA Q, LU J. Cluster synchronization for directed complex dynamical networks via pinning control[J]. Neurocomputing, 2013, 101: 354360.
[7] ZHAO M, ZHANG H, WANG Z, LIANG H. Synchronization between two general complex networks with time-delay by adaptive periodically intermittent pinning control[J]. Neurocomputing, 2014, 144:215221.
[8] XIANG L, LIU Z, CHEN Z, YUAN Z. Pinning weighted complex networks with heterogeneous delays by a small number of feedback controllers[J]. Science in China(Series F), 2008, 51(5): 13.
[9] WEI W, ZHOU W, CHEN T. Cluster synchronization of linearly coupled complex networks under pinning control[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, 56(4): 829839.
[10] SORRENTINO F, BERNARDO M, GAROFALO F, CHEN G. Controllability of complex networks via pinning[J]. Physical Review E, 2007, 75(4.2): 046103.
[11] YU W, CHEN G, LÜ J. On pinning synchronization of complex dynamical networks[J]. Automatica, 2009, 45(2): 429435.
[12] 王磊,戴华平,孙优贤.基于复杂网络模型的同步分析及控制[J]. 控制与决策,2008,23(1): 812.
WANG L, DAI H P, SUN Y S. Synchronization analysis and control based on complex network models[J]. Control and Decision, 2008,23(1): 812.
[13] HOU Z S, WANG Z. From model-based control to data-driven control: survey, classification and perspective[J]. Information Sciences, 2013, 235: 335.
[14] 侯忠生. 无模型自适应控制的现状与展望. 控制理论与应用, 2006,23(4): 586592.
HOU Z S. On model-free adaptive control: the state of the art and perspective[J]. Control Theory & Applications, 2006, 23(4): 586592.
[15] HOU Z S, JIN S T. Model Free Adaptive Control: Theory and Application[M]. Boca Raton, FL, USA: CRC Press, 2014.
[16] 侯忠生, 许建新. 数据驱动控制理论及方法的回顾和展望[J]. 自动化学报, 2009, 35(6): 650667.
HOU Z S, XU J X. On data-driven control theory: the state of the art and perspective[J]. Acta Automatica Sinica, 2009, 35(6): 650667.
[17] FAN A, LI J. Adaptive neural network prescribed performance matrix projection synchronization for unknown complex dynamical networks with different dimensions[J]. Neurocomputing, 2018, 281: 5566.
[18] SUAREZ O, VEGA C, SANCHEZ E,CHEN G, ELVIRA-CEJA J, RODRIGUEZ D. Neural sliding-mode pinning control for output synchronization for uncertain general complex networks[J]. Automatica, 2020, 112: 108694.
[19] BAGGIO G, BASSETT D, PASQUALETTI F. Data-driven control of complex networks[J]. Nature Communications, 2021, 12(1): 1429.
[20] TIAGO P, SEBASTIAN V, MATTEO T. Heterogeneously coupled maps: hub dynamics and emergence across connectivity layers.[J]. Eur Math Soc, 2020,22(7): 21832252.
[21] LIU H, LU J, LÜ J, HILL D. Structure identification of uncertain general complex dynamical networks with time delay[J]. Automatica, 2009, 45(8): 17991807.
[22] HOU Z S and XIONG S S. On model-free adaptive control and its stability analysis[J]. IEEE Transactions on Automatic Control, 2019, 64(11): 45554569.
[23] ZHANG H, ZHOU J, SUN Q, et al. Data-driven control for interlinked AC/DC microgrids via model-free adaptive control and dual-droop control[J]. IEEE Transactions on Smart Grid, 2017, 8(2): 557571.
[24] FETANAT M, STEVENS M, HAYWARD C, et. al. A physiological control system for an implantable heart pump that accommodates for interpatient and intrapatient variations[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(4): 11671175
[25] QIU X, WANG Y, ZHANG H, XIE X. Resilient model free adaptive distributed LFC for multi-area power systems against jamming attacks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(8): 41204129.
[26] LU Y, Wang X. Pinning control of directed dynamical networks based on ControlRank[J]. International Journal of Computer Mathematics, 2008, 85(8): 12791286.
[27] LIU H, XU X, LU J, CHEN G, ZENG Z. Optimizing pinning control of complex dynamical networks based on spectral properties of grounded laplacian matrices[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(2): 786796.
[28] GOODWIN G C, SIN K S. Adaptive Filtering Prediction and Control[M]. Englewood Cliffs, NJ: Prentice-Hall, 1984.
[29] KURAMOTO Y. Self-entrainment of a population of coupled nonlinear oscillators[J]. International Symposium on Mathematical Problems in Theoretical Physics. 1975, 39:420422.
[30] 陈军统,徐振华,项秉铜等.具有控制器增益随机不确定性的多智能体一致性控制[J]. 南京信息工程大学学报(自然科学版), 2019,11(4): 398403.
CHEN J T, XU Z H, XIANG B T.Synchronization analysis for general linear complex networks via event-based aperiodically intermittent pinning control[J]. Journal of Nanjing University of Information Science & Technology, 2019,11(4): 398403.
[31] RODRIGUES F, PERON T, JI P, KURTHS J. The Kuramoto model in complex networks[J]. Physics Reports, 2016, 610, 198.
[32] BARAB ′ASI, R′EKA. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509512.
[33] CHEN G R, WANG X F, LI X. Introduction to Complex Networks: Models, Structures and Dynamics[M]. Beijing: High Education Press, 2012.
[1] 李伟莎, 王淑良, 宋博. 基于强化学习风电并网策略下的韧性分析[J]. 复杂系统与复杂性科学, 2025, 22(2): 128-134.
[2] 张明磊, 宋玉蓉, 曲鸿博. 基于图注意力机制的复杂网络关键节点识别[J]. 复杂系统与复杂性科学, 2025, 22(2): 113-119.
[3] 张琦, 汪小帆. 复杂网络观点动力学分析与干预若干研究进展[J]. 复杂系统与复杂性科学, 2025, 22(2): 31-44.
[4] 张耀波, 张胜, 王雨萱, 熊聪源. 基于K-shell的复杂网络簇生长维数研究[J]. 复杂系统与复杂性科学, 2025, 22(1): 11-17.
[5] 詹秀秀, 叶涛, 刘闯, 刘雪梅. 农产品贸易网络中国家影响力分析与研究[J]. 复杂系统与复杂性科学, 2025, 22(1): 26-32.
[6] 胡福年, 杨伟丹, 陈军. 基于关键节点的电力信息物理系统鲁棒性评估[J]. 复杂系统与复杂性科学, 2025, 22(1): 43-49.
[7] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[8] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[9] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[10] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[11] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[12] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[13] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[14] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[15] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed