Please wait a minute...
2025年2月19日 星期三
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (4): 28-33    DOI: 10.13306/j.1672-3813.2024.04.005
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于关键节点积极效应模型的快递物流网络点集挖掘
吴旗韬1, 李苑庭1,2, 吴海玲1,3, 杨昀昊1,2, 武俊强4
1.广东省科学院广州地理研究所,广州 510070;
2.华南师范大学地理科学学院,广州 510631;
3.广东工业大学建筑与城市规划学院,广州 510090;
4.国芯科技(广州)有限公司,广州 510700
Nodes-set Mining of Express Logistics Network Based on the Key Player Problem-positive Model
WU Qitao1, LI Yuanting1,2, WU Hailing1,3, YANG Yunhao1,2, WU Junqiang4
1. Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China;
2. School of Geosciences, South China Normal University, Guangzhou 510631, China;
3. Guangdong University of Technology, Guangzhou 510090, China;
4. Nationalchip(Guangzhou), Inc, Guangzhou 510700, China
全文: PDF(2837 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对快递物流网络中点集挖掘问题,基于关键节点积极效应模型构建DW-KPP-Pos模型,并设计一种启发式算法提升模型运算效率。对中国快递物流网络的实证分析表明:融合启发式算法的DW-KPP-Pos模型可高效挖掘快递物流网络中的“最大传播点集”,该集合成员包括上海市、重庆市、广州市、北京市、金华市和香港特别行政区;计量结果对比显示,DW-KPP-Pos模型所挖掘的点集K,相对点度数点集Kdeg、PageRank点集Kpag和中介中心性点集Kbet,传播效率分别高出0.59%、0.88%和6.19%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴旗韬
李苑庭
吴海玲
杨昀昊
武俊强
关键词 复杂网络点集挖掘方法DW-KPP-Pos模型快递物流启发式算法    
Abstract:Aiming at the problem of nodes-set mining in express logistics network, this paper constructs DW-KPP-Pos (Directed Weighted-Key Players Problem-Positive) model based on KPP-Pos (Key Player Problem-Positive) and designs a heuristic algorithm to improve the efficiency of the model. The empirical analysis of China’s urban express logistics network shows that: The DW-KPP-Pos model with heuristic algorithm can efficiently mine “Maximum spread seeds group” in express logistics network. Including Shanghai, Chongqing, Guangzhou, Beijing, Jinhua and Hong Kong; The comparison of measurement results suggest that the propagation efficiency of nodes-set K mined by DW-KPP-Pos model is 0.59%, 0.88% and 6.19% higher than that of degree nodes-set Kdeg, PageRank nodes-set Kpag and betweenness centrality nodes-set Kbet respectively. In this paper, a new method of nodes-set mining considering maximum spread effect is proposed, which can provide technical support for the layout of express logistics infrastructure.
Key wordscomplex network    nodes-set mining method    DW-KPP-Pos model    express logistics    heuristic algorithm
收稿日期: 2023-05-29      出版日期: 2025-01-03
ZTFLH:  K909  
  C94  
基金资助:国家自然科学基金(42071165)
作者简介: 吴旗韬(1982- ),男,河南平顶山人,博士,研究员,主要研究方向为交通复杂网络分析。
引用本文:   
吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
WU Qitao, LI Yuanting, WU Hailing, YANG Yunhao, WU Junqiang. Nodes-set Mining of Express Logistics Network Based on the Key Player Problem-positive Model[J]. Complex Systems and Complexity Science, 2024, 21(4): 28-33.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.04.005      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I4/28
[1] DABAGHI-ZARANDI F, KAMALIPOUR P. Community detection in complex network based on an improved random algorithm using local and global network information[DB/OL].[2023-05-06]. http://dx.chinadoi.cn/10.1016/j.jnca.2022.103492
[2] 冯芬玲,蔡明旭,贾俊杰.基于多层复杂网络的中欧班列运输网络关键节点识别研究[J].交通运输系统工程与信息,2022, 22(6):191-200.
FENG F L, CAI M X, JIA J J. Research on key node identification of China railway express transportation network based on multi-layer complex network[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6):191-200.
[3] 王灵丽,黄敏,高亮.基于聚类算法的交通网络节点重要性评价方法研究[J].交通信息与安全, 2020,38(2):80-88.
WANG L L, WANG M, GAO L. Methods of importance evaluation of traffic network node based on clustering algorithms[J]. Journal of Transport Information and Safety,2020, 38(2): 80-88.
[4] 王亭,张永,周明妮,等.融合网络拓扑结构特征与客流量的城市轨道交通关键节点识别研究[J].交通运输系统工程与信息, 2022,22(6):201-211.
WANG T, ZHANG Y, ZHOU M N, et al. Identification of key nodes of urban rail transit integrating network topology characteristics and passenger flow[J]. Journal of Transportation Systems Engineering and Information Technology, 2022,22(6):201-211.
[5] 李苑君,吴旗韬,李苑庭,等.“流空间”视角下中国电子商务快递物流网络结构与机理[J].热带地理, 2023,43(4):657-668.
LI Y J, WU Q T, LI Y T, et al. Exploring the structure and mechanism of China′s E-commerce express logistics network: based on space of flows[J]. Tropical Geography,2023,43(4):657-668.
[6] 赵之滢,于海,朱志良,等.基于网络社团结构的节点传播影响力分析[J].计算机学报, 2014,37(4):753-766.
ZHAO Z Y, YU H, ZHU Z L, et al. Identifying influential spreaders based on network community structure[J]. Chinese Journal of Computers,2014,37(4):753-766.
[7] KITSAK M, GALLOS L K, HAVLIN S, et al. Identification of influential spreaders in complex networks[J]. Nature Physics,2010,6(11):888-893.
[8] MATTEO C, GIOVANNA F, ANTONIO I. Resilience of core-periphery networks in the case of rich-club[DB/OL].[2023-02-02]. https://doi.org/10.48550/arXiv.1708.07329.
[9] BORGATTI S P. Identifying sets of key players in a social network[J]. Computational & Mathematical Organization Theory,2006,12(1):21-34.
[10] 王新栋,于华,江成.社交网络关键节点检测的积极效应问题[J].中国科学院大学学报, 2019,36(3):425-432.
WANG X D, YU H, JIANG C. Positive effect of key player detection in social networks[J]. Journal of University of Chinese Academy of Sciences,2019,36(3):425-432.
[11] JAIN A, YADAV S, VIJ S, et al. A Novel self-organizing approach to automatic traffic light management system for road traffic network[J]. Wireless Personal Communications,2020, 110(2):1303-1321.
[12] JAIN A, MITTAL K, TAYAL D K. Automatically incorporating context meaning for query expansion using graph connectivity measures[J]. Progress in Artificial Intelligence,2014, 2(2/3):129-139.
[13] CHO Y, KIM W. Technology-industry networks in technology commercialization: evidence from Korean university patents[J]. Scientometrics,2014, 98(3):1785-1810.
[14] MCGUIRER M, DECKRO R F. The weighted key player problem for social network analysis[J]. Military Operations Research,2015,20(2): 35-53.
[1] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[2] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[3] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[4] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[5] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[6] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[7] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[8] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[9] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[10] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
[11] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[12] 董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
[13] 杨文东, 黄依宁, 张生润. 基于多层复杂网络的RCEP国际航线网络特征分析[J]. 复杂系统与复杂性科学, 2023, 20(3): 60-67.
[14] 任翠萍, 杨明翔, 张裕铭, 谢逢洁. 快递安全事故致因网络构建及结构特性分析[J]. 复杂系统与复杂性科学, 2023, 20(2): 74-80.
[15] 曾茜, 韩华, 李秋晖, 李巧丽. 基于分包的混合朴素贝叶斯链路预测模型[J]. 复杂系统与复杂性科学, 2023, 20(2): 10-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed