Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (4): 34-41    DOI: 10.13306/j.1672-3813.2024.04.006
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
修正SEIQRDP传播模型的构建与分析
杨忠保a,b, 刘泽山a, 潘春燕a, 张大林a
黔南民族师范学院 a.数学与统计学院; b.贵州省高等学校复杂系统与智能优化重点实验室,贵州 都匀 558000
Construction and Analysis of a Modified SEIQRDP Propagation Model
YANG Zhongbaoa,b, LIU Zeshana, PAN Chunyana, ZHANG Dalina
a. School of Mathematics and Statistics;b. Key Laboratory of Complex Systems and Intelligent Optimization of Guizhou Province, Qiannan Normal University for Nationalities, Duyun 558000, China
全文: PDF(3691 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为研究SEIQRDP传播模型的状态,通过引入隔离控制策略,构建SEIQRDP_G传播模型;通过引入疫苗控制策略,构建四种不同修正SEIQRDP传播模型;采用基本再生数、决定系数和中位数绝对误差作为评价指标,模型在长春市的真实疫情数据进行实证分析。实验结果表明,SEIQRDP_G传播模型最贴合实际的疫情数据;SEIQRDP_Y_1和SEIQRDP_Y2_2的基本再生数最少;SEIQRDP_Y2_1与SEIQRDP传播模型的决定系数最少。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨忠保
刘泽山
潘春燕
张大林
关键词 传染病SEIQRDP传播模型疫苗控制隔离控制修正SEIQRDP传播模型    
Abstract:The SEIQRDP propagation model has seven types of states: susceptible state, non susceptible state, exposed state, confirmed state, isolated state, cured state, and dead state. By introducing isolation control strategies, it was constructed a SEIQRDP_G transmission model, the number of susceptible populations that infected individuals come into contact with will decrease per unit time, protecting the population of susceptible individuals,which can better than a comprehensive open strategy. By introducing vaccine control strategies, four different modified SEIQRDP transmission models were constructed to improve the immune capacity of susceptible populations and reduce mortality rates. The model use the basic reproduction number, and the decision coefficient and median absolute error as evaluation indicators, the real epidemic data of the model in Changchun City were empirically analyzed. The experimental results indicate that the SEIQRDP_G transmission model is most suitable for practical epidemic data; the SEIQRDP_ Y_ 1 and the SEIQRDP_ Y2_ 2 propagation model have the lowest basic regeneration number; the determination coefficients of the SEIQRDP_Y2_1 and SEIQRDP propagation models are the least. Through the introduction of control strategies, the transmission mechanism of the epidemic was further characterized.
Key wordsinfectious diseases    SEIQRDP transmission model    vaccines control    isolation control    modified SEIQRDP propagation model
收稿日期: 2023-05-08      出版日期: 2025-01-03
ZTFLH:  R181  
  O175  
基金资助:国家自然科学基金(12361102);贵州省自然科学基金(黔教合KY字[2019]202,黔教合KY字[2019]067);贵州省黔南州科技计划(2019XK04ST,2020XK03ST);黔南民族师范学院高层次人才项目(qnsyrc202204);黔南民族师范学院教育质量提升工程项目(2021xjg029);黔南民族师范学院大学生创新创业训练计划项目(S202210670024);河南省高等学校重点科研项目(23B110018);贵州省教育厅2023年度普通本科高校科学研究项目(黔教技〔2022〕377号);贵州省科技计划项目(贵黔科合基础-ZK[2022]一般549)
作者简介: 杨忠保(1988-),男,贵州从江人,硕士,讲师,主要研究方向复杂网络及建模。
引用本文:   
杨忠保, 刘泽山, 潘春燕, 张大林. 修正SEIQRDP传播模型的构建与分析[J]. 复杂系统与复杂性科学, 2024, 21(4): 34-41.
YANG Zhongbao, LIU Zeshan, PAN Chunyan, ZHANG Dalin. Construction and Analysis of a Modified SEIQRDP Propagation Model[J]. Complex Systems and Complexity Science, 2024, 21(4): 34-41.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.04.006      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I4/34
[1] 铁子涵,关彩虹,杨炜迪,等.传染病动力学模型研究进展[J].中国急救复苏与灾害医学杂志,2022,17(6):826-830.
TIE Z H, GUAN C H, YANG W D, et al. Progress in the study of infectious disease dynamics models [J]. Chinese Journal of Emergency Recovery and Disaster Medicine, 2022,17(6): 826-830.
[2] BRAUER F. Mathematical epidemiology: past, present, and future[J]. Infectious Disease Modelling, 2017, 2(2): 113-127.
[3] HAMER W H.Epidemic disease in England—the evidence of variability and persistency of type[J].Lancet,1906(1):733-739.
[4] ROSS R.The Prevention of Malaria[M]. London: John Murray, 1911.
[5] KERMACK W O, MCKENDRICK A G A. A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society a Mathematical Physical and Engineering Sciences, 1927, 115(772):700-721.
[6] KERMACK W O, MCKENDRICK A G. A contribution to the mathematical theory of epidemics[J]. Bulletin of Mathematical Biology, 1991, 53(1/2):57-87.
[7] 于红,李科赞,贾荣,等.带受限感染周期的随机移动传播网络阈值分析[J].桂林电子科技大学学报,2014,34(5):426-430.
YU H, LI K Z, JIA R, et al. Threshold analysis of random mobile transmission networks with restricted infection cycles [J]. Journal of Guilin University of Electronic Science and Technology, 2014,34(5): 426-430.
[8] FABRICIUS G, MALTZ A. Exploring the threshold of epidemic spreading for a stochastic SIR model with local and global contacts[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 540: 123208.
[9] YANG Z, ZENG Z, WANG K, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. Journal of Thoracic Disease, 2020, 12(3): 165.
[10] 曹盛力,冯沛华,时朋朋.修正SEIR传染病动力学模型应用于湖北省2019冠状病毒病(COVID-19)疫情预测和评估[J].浙江大学学报(医学版),2020,49(2):178-184.
CAO S L, FENG P H, SHI P P. Study on the epidemic development of COVID-19 in Hubei province by a modified SEIR model [J]. Journal of Zhejiang University(Medical Edition), 2020,49(2): 178-184.
[11] 李冯,宾晟,孙更新.基于时变参数的SCUIR传播模型的构建与研究[J].复杂系统与复杂性科学,2022,19(2):80-86.
LI F, BIN S, SUN X X. Construction of SCUIR propagation model based on time-varying parameters[J]. Complex Systems and Complexity Science, 2022,19(2): 80-86.
[12] YUAN R, MA Y, SHEN C, et al. Global dynamics of COVID-19 epidemic model with recessive infection and isolation[J]. Mathematical Biosciences and Engineering, 2021, 18(2):1833-1844.
[13] DELLA ROSSA F, SALZANO D, DI MEGLIO A, et al. A network model of Italy shows that intermittent regional strategies can alleviate the COVID-19 epidemic[J]. Nature Communications, 2020, 11(1): 5106.
[14] SCARPINO S V, PETRI G. On the predictability of infectious disease outbreaks[J]. Nature Communications, 2019, 10(1): 898.
[15] GIORDANO G, BLANCHINI F, BRUNO R, et al. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy[J]. Nature Medicine, 2020, 26(6): 855-860.
[16] 许静斯,王子君,刘梦洁等.境外输入性病例对疫情防控的影响——基于SEIDR传染病模型[J].科技导报,2022,40(9):40-52.
XU J S, WANG Z J, LIU M J, et al. An infectious disease model considering the impact of imported cases on internal spread of COVID-19 [J]. Science and Technology Review, 2022, 40(9): 40-52.
[17] 丁雷. SEIDR模型构建及相关典型动物疾病传播特性分析[D].南京:南京农业大学,2017.
DING L. Construction of SEIDR model and analysis of the transmission characteristics of typical animal diseases [D]. Nanjing: Nanjing Agricultural University, 2017.
[18] PENG L, YANG W, ZHANG D, et al. Epidemic analysis of COVID-19 in China by dynamical modeling[DB/OL].[2023-01-08].https://doi.org/10.48550/arXiv.2002.06563.
[19] VALBA O, AVETISOV V, GORSKY A, et al. Self-isolation or borders closing: what prevents the spread of the epidemic better?[J]. Physical Review E, 2020, 102(1): 010401.
[20] TE VRUGT M, BICKMANN J, WITTKOWSKI R. Effects of social distancing and isolation on epidemic spreading modeled via dynamical density functional theory[J]. Nature Communications, 2020, 11(1): 5576.
[21] DI MURO M A, ALVAREZ-ZUZEK L G, HAVLIN S, et al. Multiple outbreaks in epidemic spreading with local vaccination and limited vaccines[J]. New Journal of Physics, 2018, 20(8): 083025.
[22] SCHMIDT J, BLESSING F, GÜRTLER L. SARS-CoV-2 vaccines and reaction of the immune system. Can the epidemic spread of the virus be prevented by vaccination?[J]. Deutsch Medizinische Wochenschrift(1946), 2021,146(16):1085-1090.
[23] ZUO C, WANG A, ZHU F,et al. A new coupled awareness-epidemic spreading model with neighbor behavior on multiplex networks[J].Complexity, 2021(4):1-14.
[1] 韩世峰, 翟夏菲, 赵继军. 传染率季节性和流动人口对麻疹动态的影响[J]. 复杂系统与复杂性科学, 2024, 21(1): 139-144.
[2] 高远东, 李华龙, 王小华, 陈端兵, 梁义娟, 温涛, 周涛, 陶勇. 基于最大熵的新型冠状病毒代际间隔分布估计[J]. 复杂系统与复杂性科学, 2023, 20(2): 20-28.
[3] 席周慧, 孟德霖, 赵继军. 钻石公主号邮轮上COVID-19传播动态的研究[J]. 复杂系统与复杂性科学, 2022, 19(1): 67-73.
[4] 李稚, 宋敏. 基于“病毒变异”和“环境传人”因素的COVID-19疫情传播动力学研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 1-8.
[5] 白迪, 周武略, 赵继军. 安徽省间日疟传染率分析[J]. 复杂系统与复杂性科学, 2021, 18(1): 73-79.
[6] 王旭峰, 王燕芬, 赵继军. 基于年龄结构的中国麻疹传播动态的分析[J]. 复杂系统与复杂性科学, 2020, 17(1): 87-94.
[7] 方海旭, 陈佶, 赵继军. 青岛市麻疹免疫前后传染率分析[J]. 复杂系统与复杂性科学, 2018, 15(1): 80-85.
[8] 陈佶, 范学志, 赵继军. 手足口病传染率季节性及其与人口流动的关系[J]. 复杂系统与复杂性科学, 2017, 14(3): 97-102.
[9] 周武略, 白迪, 赵继军. 武汉市发生的新冠病毒肺炎建模研究分析[J]. 复杂系统与复杂性科学, 2020, 17(4): 58-65.
[10] 王燕芬, 王旭峰, 赵继军. 中国各省、自治区与直辖市手足口病传染率分析[J]. 复杂系统与复杂性科学, 2019, 16(3): 79-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed