Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (4): 42-47    DOI: 10.13306/j.1672-3813.2024.04.007
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
强迫Lorenz模型混沌行为的力学机理分析
王贺元1,2, 陈相霆2
1.广东科技学院通识教育学院, 广东 东莞, 523083;
2.沈阳师范大学数学与系统科学学院, 沈阳 110034
Mechanical Mechanism Analysis of Forced Lorenz Model
WANG Heyuan1,2, CHEN Xiangting2
1. College of General Education, Guangdong University of Science and Technology, Dongguan 523083,China;
2. College of Mathematics and Systematics Sciences, Shenyang Normal University,Shenyang 110034,China
全文: PDF(1802 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为揭示混沌的生成机理,探讨了强迫Lorenz模型混沌行为的力学机制。将强迫Lorenz模型转化成柯尔莫哥洛夫系统,把系统的力矩分解成惯性力矩,耗散力矩和外力矩。分析各种力矩耦合模式对系统动力学行为的影响,从中揭示系统生成混沌的力学机理。研究表明只有耗散因素,驱动因素和内能都存在的全力矩模式下,并且驱动因素和耗散因素相匹配时强迫Lorenz系统才能产生混沌。构造卡西米尔函数进行全局稳定性分析,估计强迫Lorenz模型吸引子的边界。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王贺元
陈相霆
关键词 混沌 柯尔莫哥洛夫系统 力学机理 卡西米尔函数    
Abstract:In order to reveal the generation mechanism of chaos, the mechanical mechanism of forced Lorenz model is discussed. The forced Lorenz model is transformed into Kolmogorov system, and the torques of the system are decomposed into inertial torques, dissipative torques and external torques. The effects of various torque coupling modes on the System dynamics behavior are analyzed to reveal the mechanism of chaos generation. It is shown that only when the dissipation factor, the driving factor and the internal energy exist in the full moment mode, and the driving factor and the dissipation factor match, the forced Lorenz system can produce chaos. The global stability of the forced Lorenz model is analyzed by constructing the Casimir function, and the boundary of the attractor of the forced Lorenz model is estimated.
Key wordschaos    Kolmogorov system    mechanical mechanism    Casimir function
收稿日期: 2023-05-05      出版日期: 2025-01-03
ZTFLH:  O175.14  
  O241.81  
基金资助:国家自然科学基金(11572146)
作者简介: 王贺元(1963-),男,辽宁黑山人,博士,教授,主要研究方向为非线性系统。
引用本文:   
王贺元, 陈相霆. 强迫Lorenz模型混沌行为的力学机理分析[J]. 复杂系统与复杂性科学, 2024, 21(4): 42-47.
WANG Heyuan, CHEN Xiangting. Mechanical Mechanism Analysis of Forced Lorenz Model[J]. Complex Systems and Complexity Science, 2024, 21(4): 42-47.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.04.007      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I4/42
[1] EDWARD L. Deterministic non-periodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20: 130-141.
[2] PALMER T N, BUIZZA R, MOLTENI F, et al. Chaos and forecasting-singular vectors and the predictability of weather and climate[J]. Philosophical Transactions: Physical Sciences and Engineering, 1994, 348(1688): 459-475.
[3] BHATTHACHARJEE J K, MCKANE A J. Lorenz model for the rotating Rayleigh-Bénard probiem[J]. J Phs A: MathGen, 1998, 21: 555-558.
[4] 张银,许兰喜. 旋转的Rayleigh-Bénard问题的Lorenz模型及数值模拟[J]. 北京化工大学学报(自然科学版), 2010, 37(3): 140-143.
ZHANG Y, XU L X. Lorenz model for the rotating Rayleigh-Bénard problem and its numerical simulation[J] Journal of Beijing University of Chemical Technology (Natural Science Edition), 2010, 37(3): 140-143.
[5] XU L X. On the nonlinear stability of sane hydrodynam ic problems [D]. Bayreuth: Deparment of Mathematics and Physics Bayreuth University, 1997: 3-17.
[6] WANG H Y. The dynamical behavior and the numerical simulation of a five-mode system of the navier-stokes equations for a two-dimensional incompressible fluid on a torus[J]. Journal of Applied Mathematics and Physics, 2016, 14(7):7-9.
[7] 王贺元,崔进. Navier-Stokes方程九模类Lorenz方程组的动力学行为及数值仿真[J]. 工程数学学报, 2015, 32(6): 893-897.
WANG H Y, CUI Jin. The dynamic behavior and numerical simulation of nine mode lorenz equation system for navier-stokes equation [J] Journal of Engineering Mathematics, 2015, 32(6): 893-897.
[8] VALTER F, CLAUDLO T. A seven modes truncation of the plane incompressible Navicr-Stokes equations[J]. Journal of Statistical Physics, 1981, 25(3): 397-417.
[9] BOLDRIGHINI C, FRANCESHINI V. A five-dimensional truncation of the plane incompressible Navier-Stokes equations[J]. Communications in Mathematical Physics, 1979,64:159-170.
[10] CHEN G R,UETA T. Yet another chaotic attractor[J]. International Journal of Bifurcation and Chaos, 1999, 9(7): 1465-1469.
[11] LÜ J H, CHEN G R. A new chaotic attractor[J]. International Journal of Bifurcation and Chaos, 2002, 12(3): 659-661.
[12] 黎爱兵, 张立凤, 项杰. 外强迫对Lorenz系统初值可预报性的影响[J]. 物理学报, 2012, 61(11): 9.
LI A B, ZHANG L F, XIANG J. Influence of external forcing on the predictability of Lorenz systems [J] Journal of Physics, 2012, 61(11): 9.
[13] 尹社会, 张勇, 张付臣, 等. 基于Lorenz系统的强迫Lorenz混沌系统的动力学研究[J]. 东北师大学报:自然科学版, 2014,46(1): 6.
YIN S H, ZHANG Y, ZHANG F C, et al. Dynamics study of forced lorenz chaotic system based on Lorenz system[J]. Journal of Northeast Normal University: Natural Science Edition, 2014, 46(1): 6.
[14] 李保生, 丁瑞强, 李建平,等. 强迫Lorenz系统的可预报性研究[J]. 物理学报, 2017, 66(6): 8.
LI B S, DING R Q, LI J P, et al. A study on the predictability of forced Lorenz systems[J]. Journal of Physics, 2017, 66(6): 8.
[15] 刘绍刚, 李艳平. Lorenz系统的非线性动力学行为及仿真[J]. 计算机工程与设计. 2019, 40(3): 807-811.
LIU S G, LI Y P. Nonlinear dynamic behavior and simulation of Lorenz system[J]. Computer Engineering and Design, 2019, 40(3): 807-811.
[16] 宋宇. 含季节强迫项的Lorenz-84大气模型的动力学研究[D]. 北京: 北京交通大学, 2012.
SONG Y. A dynamic study of Lorenz-84 atmospheric model with seasonal forcing term[D]. Beijing: Beijing Jiaotong University, 2012.
[17] 孙叶平, 李德雪, 张勇, 等. 受扰动Lorenz混沌系统的动力学分析[J]. 计算机工程与应用, 2015, 51(11): 55-56.
SUN Y P, LI D X, ZHANG Y, et al. Dynamic analysis of for forced Lorenz chaotic systems[J]. Computer Engineering and Applications, 2015, 51(11): 55-56.
[18] 李一伟, 范广洲. Lorenz模型中外源强迫强弱对初值可预报性的影响研究[J]. 高原气象, 2020, 39(1): 9.
LI Y W, FAN G Z. Research on the influence of externally forced intensity on the predictability of initial values in the Lorenz model[J]. Plateau Meteorology, 2020, 39(1): 9.
[19] PELINO V, PASINI A. Energy cycle for the Lorenz attractor[J]. Chaos, Solitons and Fractals: Applications in Science and Engineering: An Interdisciplinary Journal of Nonlinear Science, 2014,64:67-77.
[20] QI G, LIANG X. Mechanical analysis of Qi four-wing chaotic system[J]. Nonlinear Dyn, 2016, 86(2): 1095-1106.
[21] 王贺元. Couette-Taylor流的力学机理与能量转换[J]. 数学物理学报,2020,40(1): 243-256.
WANG H Y. The mechanical mechanism and energy conversion of Couette-Taylor flow[J] Acta Mathematica Scientia, 2020, 40(1): 243-256.
[22] ANTONELLO P, VINICIO P. A unified view of Kolmogorov and Lorenz systems[J]. Physics Letters A, 2000, 275(5): 435-446.
[23] ANTONELLO P, VINICIO P, SERGIO P. Torsion and attractors in the Kolmogorov hydrodynamical system[J]. Physics Letters A, 1998, 241(1): 77-83.
[24] VINICIO P, ANTONELLO P. Dissipation in Lie-Poisson systems and the Lorenz-84 model[J]. Physics Letters A, 2001, 291(6): 389-396.
[25] LIANG X Y, QI G Y. Mechanical analysis of Chen chaotic system[J]. Chaos, Solitons and Fractals: the Interdisciplinary Journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, 2017, 98: 173-177.
[26] DOERING C R,GIBBON J D. On the shape and dimension of the Lorenz zttractor[J]. Dyn Stab Syst, 1995, 10(3): 255.
[1] 张玉玺, 孙小淇. 概周期驱动二维正弦系统的奇异非混沌吸引子特性分析[J]. 复杂系统与复杂性科学, 2024, 21(4): 53-57.
[2] 刘思洋, 安新磊, 施倩倩, 王越. 一类多涡卷Chua系统及其在图像加密中的应用[J]. 复杂系统与复杂性科学, 2024, 21(3): 85-92.
[3] 王越, 安新磊, 施倩倩, 刘思洋. 基于一个复混沌系统的图像加密算法[J]. 复杂系统与复杂性科学, 2024, 21(3): 77-84.
[4] 赵奕凡, 沈云柱, 杜传斌. 一类概周期驱动分段光滑系统的奇异非混沌吸引子特性分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 75-79.
[5] 高正中, 杜翔. 含多项式取绝对值函数的混沌系统分析与应用[J]. 复杂系统与复杂性科学, 2024, 21(1): 74-84.
[6] 闫少辉, 顾斌贤, 宋震龙, 施万林. 基于一种四维忆阻超混沌系统的图像加密算法[J]. 复杂系统与复杂性科学, 2023, 20(2): 43-51.
[7] 吕恩胜. 改进的混沌反控制设计及在图像加密中的应用[J]. 复杂系统与复杂性科学, 2022, 19(4): 91-98.
[8] 颜闽秀, 谢俊红. 可调数目吸引子共存的混沌系统及同步控制[J]. 复杂系统与复杂性科学, 2022, 19(4): 64-71.
[9] 闫少辉, 施万林, 王棋羽, 任钰. 一个新三维切换混沌系统的研究与同步应用[J]. 复杂系统与复杂性科学, 2022, 19(3): 94-103.
[10] 田英楠, 王嘉琪, 张新立. 不同理性预期下量子库诺特模型的动态演化分析[J]. 复杂系统与复杂性科学, 2021, 18(3): 45-50.
[11] 方洁, 姜明浩, 安小宇, 邓玮. 激光复混沌系统构建及其点乘函数投影同步[J]. 复杂系统与复杂性科学, 2021, 18(1): 30-37.
[12] 董海, 徐德珉. 三渠道回收模式下闭环供应链混沌控制研究[J]. 复杂系统与复杂性科学, 2020, 17(1): 55-61.
[13] 田兴华, 张纪会, 李阳. 基于混沌映射的自适应退火型粒子群算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 45-54.
[14] 高子林, 王银河. 一类不确定混沌系统的自适应模糊同步控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 79-88.
[15] 肖世富, 陈红永, 牛红攀. 一类对称双势阱Duffing系统周期解的衍生与演化[J]. 复杂系统与复杂性科学, 2017, 14(3): 103-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed