Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (4): 48-52    DOI: 10.13306/j.1672-3813.2024.04.008
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
一类振荡器的无穷多共存吸引子复杂Wada域分析
王敬伟
青岛大学数学与统计学院,山东 青岛 266071
Complex Wada Basin Analysis of Infinite Coexisting Attractors in a Class of Oscillators
WANG Jingwei
School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China
全文: PDF(8157 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为探索无穷多共存吸引子是否存在公共Wada域边界的问题,推广Nusse-Yorke的有限Wada域定理到无穷多Wada域。基于数值实验,在一类非线性振荡器发现了无穷多共存吸引子具有公共的吸引域边界,且这些吸引子在空间分布上呈现周期性。进一步分析了吸引子复杂的Wada吸引域结构,通过推广的Nusse-Yorke关于Wada域的判定定理,证实了这些连通的Wada域具有公共边界。最后指出这种类型的Wada域边界表现出了非常复杂的非线性动力学特性,可能导致高度的不确定性以及对初始条件的极端敏感依赖性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王敬伟
关键词 Wada域吸引域共存吸引子超稳态    
Abstract:To explore the question of whether there exist common Wada basin boundaries among an infinite number of coexisting attractors, we extended Nusse-Yorke′s theorem for finite Wada basins to the scenario of infinite Wada basins. Through numerical experiments conducted on a class of nonlinear oscillators, we discovered that within this class, there are infinite coexisting attractors that share common basin boundaries, and these attractors exhibit periodic spatial distributions. Further analysis of the intricate Wada basin structures associated with these attractors, employing a generalized version of Nusse-Yorke′s theorem concerning Wada basins, confirmed the presence of common boundaries among these interconnected Wada basins. Finally, it is essential to note that this type of Wada basin boundary exhibits highly complex nonlinear dynamical characteristics, potentially leading to significant uncertainty and extreme sensitivity to initial conditions.
Key wordswada basin    basin of attraction    coexisting attractors    megastability
收稿日期: 2023-05-10      出版日期: 2025-01-03
ZTFLH:  N93  
  O193  
基金资助:山东省自然科学基金(ZR2021MA095);国家自然科学基金重点项目(11732014)
作者简介: 王敬伟(1998-),男,山东青岛人,硕士研究生,主要研究方向为非线性动力学,复杂系统等。
引用本文:   
王敬伟. 一类振荡器的无穷多共存吸引子复杂Wada域分析[J]. 复杂系统与复杂性科学, 2024, 21(4): 48-52.
WANG Jingwei. Complex Wada Basin Analysis of Infinite Coexisting Attractors in a Class of Oscillators[J]. Complex Systems and Complexity Science, 2024, 21(4): 48-52.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.04.008      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I4/48
[1] NUSSE H E, YORKE J A. Basins of attraction [J]. Science, 1996, 271(5254): 1376-1380.
[2] MCDONALD S W, GREBOGI C, OTT E, et al. Fractal basin boundaries [J]. Physica D: Nonlinear Phenomena, 1985, 17(2): 125-153.
[3] AGUIRRE J, VIANA R L, SANJUÁN M A F. Fractal structures in nonlinear dynamics [J]. Reviews of Modern Physics, 2009, 81(1): 333.
[4] KENNEDY J, YORKE J A. Basins of wada [J]. Physica D: Nonlinear Phenomena, 1991, 51(1-3): 213-225.
[5] EPUREANU B I, GREENSIDE H S. Fractal basins of attraction associated with a damped Newton′s method [J]. SIAM review, 1998, 40(1): 102-109.
[6] SWEET D, OTT E, YORKE J A. Topology in chaotic scattering [J]. Nature, 1999, 399(6734): 315-316.
[7] AGUIRRE J, VALLEJO J C, SANJUÁN M A F. Wada basins and chaotic invariant sets in the Hénon-Heiles system [J]. Physical Review E, 2001, 64(6): 066208.
[8] NUSSE H E, YORKE J A. Wada basin boundaries and basin cells [J]. Physica D: Nonlinear Phenomena, 1996, 90(3): 242-261.
[9] ZHANG Y, LUO G. Wada bifurcations and partially Wada basin boundaries in a two-dimensional cubic map [J]. Physics Letters A, 2013, 377(18): 1274-1281.
[10] NUSSE H E, YORKE J A. Fractal basin boundaries generated by basin cells and the geometry of mixing chaotic flows [J]. Physical Review Letters, 2000, 84(4): 626.
[11] AGUIRRE J, SANJUÁN M A F. Unpredictable behavior in the duffing oscillator: wada basins [J]. Physica D: Nonlinear Phenomena, 2002, 171(1/2): 41-51.
[12] ZHANG Y, ZHANG H, GAO W. Multiple Wada basins with common boundaries in nonlinear driven oscillators [J]. Nonlinear Dynamics, 2015, 79(4): 2667-2674.
[13] ZHANG Y, XIE X, LUO G. Multiple nested basin boundaries in nonlinear driven oscillators [J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 44: 220-228.
[14] VANDERMEER J. Wada basins and qualitative unpredictability in ecological models: a graphical interpretation [J]. Ecological modelling, 2004, 176(1/2): 65-74.
[15] ZHANG Y. Wada basin boundaries and generalized basin cells in a smooth and discontinuous oscillator [J]. Nonlinear Dynamics, 2021, 106(40): 2879-2891.
[16] WAGEMAKERS A, DAZA A, SANJUÁN M A F. How to detect Wada basins [J]. Discrete and Continuous Dynamical Systems B, 2021, 26(1): 717-739.
[17] WANG J, ZHANG Y. Infinite number of Wada basins in a megastable nonlinear oscillator [J]. Nonlinear Dynamics, 2023, 111(11): 10601-10615.
[18] PISARCHIK A N, HRAMOV A E. Multistability in Physical and Living Systems [M]. Berlin: Springer, 2022: 185-189.
[19] HENS C, DANA S K, FEUDEL U. Extreme multistability: attractor manipulation and robustness [J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2015, 25(5): 053112.
[20] LOUODOP P, TCHITNGA R, FAGUNDES F F, et al. Extreme multistability in a Josephson-junction-based circuit [J]. Physical Review E, 2019, 99(4): 042208.
[21] NEWHOUSE S E. Diffeomorphisms with infinitely many sinks [J]. Topology, 1974, 13(1): 9-18.
[22] CHAWANYA T. Infinitely many attractors in game dynamics system [J]. Progress of Theoretical Physics, 1996, 95(3): 679-684.
[23] CHAWANYA T. Coexistence of infinitely many attractors in a simple flow [J]. Physica D: Nonlinear Phenomena, 1997, 109(3/4): 201-241.
[24] MUNI S S, MCLACHLAN R I, SIMPSON D. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions [J]. Discrete and Continuous Dynamical Systems A, 2021, 41(8): 3629-3650
[25] MUNI S S, MCLACHLAN R I, SIMPSON D. Unfolding globally resonant homoclinic tangencies [J]. Discrete and Continuous Dynamical Systems, 2022, 42(8):4013-4030.
[26] WANG Z, ABDOLMOHAMMADI H R, ALSAADI F E, et al. A new oscillator with infinite coexisting asymmetric attractors [J]. Chaos, Solitons & Fractals, 2018, 110: 252-258.
[27] SINGH J P, KOLEY J, LOCHAN K, et al. Presence of megastability and infinitely many equilibria in a periodically and quasi-periodically excited single-link manipulator [J]. International Journal of Bifurcation and Chaos, 2021,31(2): 2130005.
[28] KARAMI M, RAMAKRISHNAN B, Hamarash II, et al. Investigation of the simplest megastable chaotic oscillator with spatially triangular wave damping [J]. International Journal of Bifurcation and Chaos, 2022,32(7): 2230016.
[29] RAJAGOPAL K, CIMEN M E, JAFARI S, et al. A family of circulant megastable chaotic oscillators, its application for the detection of a feeble signal and PID controller for time-delay systems by using chaotic SCA algorithm [J]. Chaos, Solitons & Fractals, 2021, 148: 110992.
[30] RAMAKRISHNAN B, NATIQ H, RAJAGOPAL K, et al. A novel megastable system: cloud, kite, and arrow-like attractors and their dynamics [J]. International Journal of Bifurcation and Chaos, 2022, 32(10): 2250152.
[31] Li R, DONG E, TONG J, et al. A new autonomous memristive megastable oscillator and its Hamiltonian-energy-dependent megastability [J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2022,32(3): 039901.
[32] ZHANG K, VIJAYAKUMAR M, JAMAL S S, et al. A novel megastable oscillator with a strange structure of coexisting attractors: design, analysis, and FPGA implementation [J]. Complexity, 2021: 2594965.
[33] ALEXANDER P, EMIROĞLU S, KANAGARAJ S, et al. Infinite coexisting attractors in an autonomous hyperchaotic megastable oscillator and linear quadratic regulator-based control and synchronization [J]. The European Physical Journal B, 2023, 96(1): 12.
[34] LU H, RAJAGOPAL K, NAZARIMEHR F, et al. A new multi-scroll megastable oscillator based on the sign function [J]. International Journal of Bifurcation and Chaos, 2021, 31(8): 2150140.
[35] RAMAKRISHNAN B, FAGHANI Z, NATIQ H, et al. A megastable oscillator with two types of attractors [J]. Scientia Iranica, 2022, 32(10): 2250152.
[36] KARAMI M, RAMAMOORTHY R, ALI A, et al. Jagged-shape chaotic attractors of a megastable oscillator with spatially square-wave damping [J]. The European Physical Journal Special Topics, 2022, 231(11/12): 2445-2454.
[1] 高正中, 杜翔. 含多项式取绝对值函数的混沌系统分析与应用[J]. 复杂系统与复杂性科学, 2024, 21(1): 74-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed