Abstract:In order to get more complex dynamical properties, a chaotic system with cubic polynomial taking absolute value function is designed. The theoretical model of the chaotic system is described by a set of nonlinear equations with three state variables. The basic properties and the dynamic characteristics of the system like phase diagram, time domain waveform, Lyapunov exponent, Poincaré map and bifurcation diagram are analyzed. Under certain parameter conditions, the system has periodic and chaotic properties, and there are coexistence attractors or aggregation attractors when the initial values are symmetrical. In addition, when some system parameters change, the system has constant dynamic characteristics, when the initial value of the state variable changes, the dynamic characteristics of the system also remain unchanged. The correctness of the theory is verified by circuit simulation. Based on the newly designed chaotic system, an encryption scheme is designed, and the encryption performance is analyzed, which shows the effectiveness of the encryption scheme.
高正中, 杜翔. 含多项式取绝对值函数的混沌系统分析与应用[J]. 复杂系统与复杂性科学, 2024, 21(1): 74-84.
GAO Zhengzhong, DU Xiang. Analysis and Application of Chaotic System with Polynomial Absolute Valued Function[J]. Complex Systems and Complexity Science, 2024, 21(1): 74-84.
[1] LORENZ E N. Deterministic non-periodic flows [J]. Journal of the Atmospheric Sciences, 1963, 20(3): 130-141. [2] 田兴华, 张纪会, 李阳. 基于混沌映射的自适应退火型粒子群算法 [J]. 复杂系统与复杂性科学, 2020, 17(1): 45-54. TIAN X H, ZHANG J H, LI Y. An adaptive annealing particle swarm optimization based on chaotic mapping [J]. ComplexSystems and Complexity Science, 2020, 17(1): 45-54. [3] LUO Y L, ZHOU R L, LIU J X, et al. A novel image encryption scheme based on Kepler's third law and random Hadamard transform [J]. Chinese Physics B, 2017, 26(12): 120504. [4] SUN J W, YANG Q F, WANG Y F. Dynamical analysis of novel memristor chaotic system and DNA encryption application [J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2020, 44: 449-460. [5] 刘林芳, 芮国胜, 张洋,等. 基于相空间对称Lorenz阵子群的混沌通信保密研究 [J]. 通信学报, 2019, 40(5): 32-38. LIU L F, RUI G S, ZHANG Y, et al. Research on the chaotic secure communication of the phase-space symmetric Lorenz oscillator group [J]. Journal on Communications, 2019, 40(5): 32-38. [6] SAHIN M, TASJIRAN Z, HASAN G, et al. Application and modeling of a novel 4D memristive chaotic system for communication systems[J]. Circuits, Systems, and Signal Processing, 2020, 39: 3320-3349. [7] YU F, LIU L, HE B Y, et al. Analysis and FPGA Realization of a novel 5D hyperchaotic four-wing memristive system, active control synchronization, and secure communication application [DB/OL].[2022-02-02].http://doi.org/10.1155/2019/4047957. [8] 卢辉斌, 王丽佳. 基于Hopfield网络的彩色图像混沌加密算法 [J]. 吉林大学学报(信息科学版), 2014, 32(2): 131-137. LU H B, WANG L J. Color image encryption algorithm of chaotic based on the hopfield network [J]. Journal of Jilin University (Information Science Edition), 2014, 32(2): 131-137. [9] LIN H R, WANG C H, TAN Y M, et al. Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network affected by electromagnetic radiation [J]. Nonlinear Dynamics, 2020, 99: 2369-2386. [10] 孙亮, 罗佳, 乔印虎.局部有源忆阻器电路及其在HR耦合神经元网络中的应用[J].电子与信息学报,2021,43(11): 3374-3383. SUN L, LUO J, QIAO Y H. A Locally active memristor circuit and its application to a coupled hindmarsh-rose neuron network [J]. Journal of Electronics & Information Technology, 2021, 43(11): 3374-3383. [11] 师东生, 石炜. 一个新四翼高维超混沌系统的复杂动力学行为研究与仿真 [J]. 现代电子技术, 2020, 43(19): 10-13. SHI D S, SHI W. Research and simulation of complex dynamic behavior of new four-wing high-dimensional hyperchaotic system [J]. Modern Electronics Technique, 2020, 43(19): 10-13. [12] 鲜永菊, 扶坤荣, 徐昌彪. 一个具有多翼吸引子的四维多稳态超混沌系统 [J]. 振动与冲击, 2020, 40(1): 15-22, 38. XIAN Y J, FU K R, XU C B. A 4-D multi-stable hyper-chaotic system with multi-wing attractors [J]. Journal of Vibration and Shock, 2020, 40 (1): 15-22, 38. [13] YANG L B, YANG Q G, CHEN G R. Hidden attractors, singularly degenerate heteroclinic orbits, multistability and physical realization of a new 6D hyperchaotic system [J]. Communications in Nonlinear Science and Numerical Simulation,2020, 90: 105362. [14] MA J, CHEN Z Q, WANG Z L, et al. A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium [J]. Nonlinear Dynamics, 2015, 81: 1275-1288. [15] QI G Y, CHEN G R, DU S Z, et al. Analysis of a new chaotic system [J]. Physica A, 2005, 352: 295-308. [16] ATIYEH B, KARTHIKEYAN R, ABDUL J, et al. Dynamical analysis of a new multistable chaotic system with hidden attractor: antimonotonicity, coexisting multiple attractors, and offset boosting [J]. Physics Letters A, 2019, 383: 1450-1456. [17] BAO H, WANG N, BAO B C, et al. Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria [J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 57: 264-275. [18] CHEN Q F, HONG Y G, CHEN G R. Chaotic behaviors and toroidal/spherical attractors generated by discontinuous dynamics[J]. Physica A, 2006, 371: 293-302. [19] 臧鸿雁, 韦心元, 袁悦. 一类三次多项式混沌映射的判定及性能分析 [J]. 电子与信息学报, 2021, 43(2): 454-460. ZANG H Y, WEI X Y, YUAN Y. Determination and properties analysis of a cubic polynomial chaotic map [J]. Journal of Electronics & Information Technology, 2021, 43(2): 454-460. [20] 高秉建. 基于Liu混沌系统生成的多翅膀蝴蝶吸引子 [J]. 复杂系统与复杂性科学, 2016, 13(1): 91-94. GAO B J. Multi-wing butterfly attractor from a modified chaotic system [J].Complex Systems and Complexity Science, 2016, 13(1): 91-94. [21] WANG Z, SUN C, JIN F, et al. A widely amplitude-adjustable chaotic oscillator based on a physical model of HP memristor [J]. IEICE Electronics Express, 2018, 15(8): 1-6. [22] WANG R, LI C B, CICEK S, et al. Amemristive hyperjerk chaotic system: amplitude control, FPGA design, and prediction with artificial neural network [DB/OL].[2022-02-01].http://doi.org/10.1155/2021/6636813.