Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (1): 74-84    DOI: 10.13306/j.1672-3813.2024.01.010
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
含多项式取绝对值函数的混沌系统分析与应用
高正中, 杜翔
山东科技大学电气与自动化工程学院,山东 青岛 266510
Analysis and Application of Chaotic System with Polynomial Absolute Valued Function
GAO Zhengzhong, DU Xiang
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266510, China
全文: PDF(6301 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为获得更复杂的动力学特性,设计了一种含有三次多项式取绝对值函数的混沌系统,该混沌系统的理论模型由含有3个状态变量的非线性方程组描述。分析了该系统的基本属性,以及相轨图、时域波形、Lyapunov指数、Poincaré映射、分岔图等动力学特性。系统在一定的参数条件下存在周期和混沌的特性,初值对称时存在共存吸引子或聚合吸引子。此外,某些系统参数变化时,系统存在恒定的动力学特性,状态变量初值变化时系统的动力学特性也是恒定的。电路仿真验证了理论的正确性。基于新设计的混沌系统设计了一种加密方案,对加密性能进行了分析,表明了加密方案的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高正中
杜翔
关键词 混沌动力学共存吸引子共存分岔图像加密    
Abstract:In order to get more complex dynamical properties, a chaotic system with cubic polynomial taking absolute value function is designed. The theoretical model of the chaotic system is described by a set of nonlinear equations with three state variables. The basic properties and the dynamic characteristics of the system like phase diagram, time domain waveform, Lyapunov exponent, Poincaré map and bifurcation diagram are analyzed. Under certain parameter conditions, the system has periodic and chaotic properties, and there are coexistence attractors or aggregation attractors when the initial values are symmetrical. In addition, when some system parameters change, the system has constant dynamic characteristics, when the initial value of the state variable changes, the dynamic characteristics of the system also remain unchanged. The correctness of the theory is verified by circuit simulation. Based on the newly designed chaotic system, an encryption scheme is designed, and the encryption performance is analyzed, which shows the effectiveness of the encryption scheme.
Key wordschaos    dynamics    coexisting attractors    coexisting bifurcation    image encryption
收稿日期: 2022-05-18      出版日期: 2024-04-26
ZTFLH:  TP271.62  
基金资助:中国博士后科学基金(2015T80279);山东省自然科学基金(ZR2020MF071)
作者简介: 高正中(1971-),男,山东济宁人,博士,教授,主要研究方向为计算机检测与控制、机器人技术等。
引用本文:   
高正中, 杜翔. 含多项式取绝对值函数的混沌系统分析与应用[J]. 复杂系统与复杂性科学, 2024, 21(1): 74-84.
GAO Zhengzhong, DU Xiang. Analysis and Application of Chaotic System with Polynomial Absolute Valued Function[J]. Complex Systems and Complexity Science, 2024, 21(1): 74-84.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.01.010      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I1/74
[1] LORENZ E N. Deterministic non-periodic flows [J]. Journal of the Atmospheric Sciences, 1963, 20(3): 130-141.
[2] 田兴华, 张纪会, 李阳. 基于混沌映射的自适应退火型粒子群算法 [J]. 复杂系统与复杂性科学, 2020, 17(1): 45-54.
TIAN X H, ZHANG J H, LI Y. An adaptive annealing particle swarm optimization based on chaotic mapping [J]. ComplexSystems and Complexity Science, 2020, 17(1): 45-54.
[3] LUO Y L, ZHOU R L, LIU J X, et al. A novel image encryption scheme based on Kepler's third law and random Hadamard transform [J]. Chinese Physics B, 2017, 26(12): 120504.
[4] SUN J W, YANG Q F, WANG Y F. Dynamical analysis of novel memristor chaotic system and DNA encryption application [J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2020, 44: 449-460.
[5] 刘林芳, 芮国胜, 张洋,等. 基于相空间对称Lorenz阵子群的混沌通信保密研究 [J]. 通信学报, 2019, 40(5): 32-38.
LIU L F, RUI G S, ZHANG Y, et al. Research on the chaotic secure communication of the phase-space symmetric Lorenz oscillator group [J]. Journal on Communications, 2019, 40(5): 32-38.
[6] SAHIN M, TASJIRAN Z, HASAN G, et al. Application and modeling of a novel 4D memristive chaotic system for communication systems[J]. Circuits, Systems, and Signal Processing, 2020, 39: 3320-3349.
[7] YU F, LIU L, HE B Y, et al. Analysis and FPGA Realization of a novel 5D hyperchaotic four-wing memristive system, active control synchronization, and secure communication application [DB/OL].[2022-02-02].http://doi.org/10.1155/2019/4047957.
[8] 卢辉斌, 王丽佳. 基于Hopfield网络的彩色图像混沌加密算法 [J]. 吉林大学学报(信息科学版), 2014, 32(2): 131-137.
LU H B, WANG L J. Color image encryption algorithm of chaotic based on the hopfield network [J]. Journal of Jilin University (Information Science Edition), 2014, 32(2): 131-137.
[9] LIN H R, WANG C H, TAN Y M, et al. Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network affected by electromagnetic radiation [J]. Nonlinear Dynamics, 2020, 99: 2369-2386.
[10] 孙亮, 罗佳, 乔印虎.局部有源忆阻器电路及其在HR耦合神经元网络中的应用[J].电子与信息学报,2021,43(11): 3374-3383.
SUN L, LUO J, QIAO Y H. A Locally active memristor circuit and its application to a coupled hindmarsh-rose neuron network [J]. Journal of Electronics & Information Technology, 2021, 43(11): 3374-3383.
[11] 师东生, 石炜. 一个新四翼高维超混沌系统的复杂动力学行为研究与仿真 [J]. 现代电子技术, 2020, 43(19): 10-13.
SHI D S, SHI W. Research and simulation of complex dynamic behavior of new four-wing high-dimensional hyperchaotic system [J]. Modern Electronics Technique, 2020, 43(19): 10-13.
[12] 鲜永菊, 扶坤荣, 徐昌彪. 一个具有多翼吸引子的四维多稳态超混沌系统 [J]. 振动与冲击, 2020, 40(1): 15-22, 38.
XIAN Y J, FU K R, XU C B. A 4-D multi-stable hyper-chaotic system with multi-wing attractors [J]. Journal of Vibration and Shock, 2020, 40 (1): 15-22, 38.
[13] YANG L B, YANG Q G, CHEN G R. Hidden attractors, singularly degenerate heteroclinic orbits, multistability and physical realization of a new 6D hyperchaotic system [J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 90: 105362.
[14] MA J, CHEN Z Q, WANG Z L, et al. A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium [J]. Nonlinear Dynamics, 2015, 81: 1275-1288.
[15] QI G Y, CHEN G R, DU S Z, et al. Analysis of a new chaotic system [J]. Physica A, 2005, 352: 295-308.
[16] ATIYEH B, KARTHIKEYAN R, ABDUL J, et al. Dynamical analysis of a new multistable chaotic system with hidden attractor: antimonotonicity, coexisting multiple attractors, and offset boosting [J]. Physics Letters A, 2019, 383: 1450-1456.
[17] BAO H, WANG N, BAO B C, et al. Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria [J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 57: 264-275.
[18] CHEN Q F, HONG Y G, CHEN G R. Chaotic behaviors and toroidal/spherical attractors generated by discontinuous dynamics[J]. Physica A, 2006, 371: 293-302.
[19] 臧鸿雁, 韦心元, 袁悦. 一类三次多项式混沌映射的判定及性能分析 [J]. 电子与信息学报, 2021, 43(2): 454-460.
ZANG H Y, WEI X Y, YUAN Y. Determination and properties analysis of a cubic polynomial chaotic map [J]. Journal of Electronics & Information Technology, 2021, 43(2): 454-460.
[20] 高秉建. 基于Liu混沌系统生成的多翅膀蝴蝶吸引子 [J]. 复杂系统与复杂性科学, 2016, 13(1): 91-94.
GAO B J. Multi-wing butterfly attractor from a modified chaotic system [J].Complex Systems and Complexity Science, 2016, 13(1): 91-94.
[21] WANG Z, SUN C, JIN F, et al. A widely amplitude-adjustable chaotic oscillator based on a physical model of HP memristor [J]. IEICE Electronics Express, 2018, 15(8): 1-6.
[22] WANG R, LI C B, CICEK S, et al. Amemristive hyperjerk chaotic system: amplitude control, FPGA design, and prediction with artificial neural network [DB/OL].[2022-02-01].http://doi.org/10.1155/2021/6636813.
[1] 袁亮, 祁煜智, 何伟军, 李闻钦, 吴霞. 跨国界河流水资源冲突演化博弈模拟研究[J]. 复杂系统与复杂性科学, 2023, 20(3): 90-96.
[2] 郭淑慧, 吕欣. 网络直播大数据:统计特征与时序规律挖掘[J]. 复杂系统与复杂性科学, 2023, 20(2): 1-9.
[3] 朱懋昌, 宾晟, 孙更新. 基于COVID-19传播特性的传染病模型的构建与研究[J]. 复杂系统与复杂性科学, 2023, 20(2): 29-37.
[4] 闫少辉, 顾斌贤, 宋震龙, 施万林. 基于一种四维忆阻超混沌系统的图像加密算法[J]. 复杂系统与复杂性科学, 2023, 20(2): 43-51.
[5] 王佳亮, 李海滨, 李海燕. 基于复杂网络的新冠病毒群体免疫数值仿真[J]. 复杂系统与复杂性科学, 2023, 20(1): 27-33.
[6] 吕恩胜. 改进的混沌反控制设计及在图像加密中的应用[J]. 复杂系统与复杂性科学, 2022, 19(4): 91-98.
[7] 王一伊, 卜凡亮. 涉恐个体极端思想演化双阈值观点动力学模型[J]. 复杂系统与复杂性科学, 2022, 19(4): 55-63.
[8] 颜闽秀, 谢俊红. 可调数目吸引子共存的混沌系统及同步控制[J]. 复杂系统与复杂性科学, 2022, 19(4): 64-71.
[9] 王宇, 冯育强. 基于Conformable分数阶导数的COVID-19模型及其数值解[J]. 复杂系统与复杂性科学, 2022, 19(3): 27-32.
[10] 闫少辉, 施万林, 王棋羽, 任钰. 一个新三维切换混沌系统的研究与同步应用[J]. 复杂系统与复杂性科学, 2022, 19(3): 94-103.
[11] 郑玉雯, 薛伟贤. 丝绸之路经济带生产网络与生态环境耦合的系统动力学研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 9-20.
[12] 田英楠, 王嘉琪, 张新立. 不同理性预期下量子库诺特模型的动态演化分析[J]. 复杂系统与复杂性科学, 2021, 18(3): 45-50.
[13] 李卓群, 杨玉健, 黄克兢. 考虑风险规避行为的生鲜供应链系统动态研究[J]. 复杂系统与复杂性科学, 2021, 18(3): 51-59.
[14] 石娟, 常丁懿, 郑鹏, 李冠龙, 周嘉尧. 基于SD-SEIR模型的实验室人员不安全行为传播研究[J]. 复杂系统与复杂性科学, 2021, 18(3): 67-74.
[15] 李晟婷, 周晓唯, 武增海. 中国环保产业高质量发展的异质性政策驱动研究[J]. 复杂系统与复杂性科学, 2021, 18(2): 66-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed