Please wait a minute...
文章检索
复杂系统与复杂性科学  2025, Vol. 22 Issue (2): 128-134    DOI: 10.13306/j.1672-3813.2025.02.016
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于强化学习风电并网策略下的韧性分析
李伟莎, 王淑良, 宋博
江苏师范大学电气工程及自动化学院,江苏 徐州 221116
Reinforcement Learning-based Resilience Analysis of Wind Power Grid Under Integration Strategy
LI Weisha, WANG Shuliang, SONG Bo
School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou 221116, China
全文: PDF(2408 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了研究风电场并网位置对电力网络韧性的影响,建立了一个新的分析框架来研究风电网络的韧性。在该框架中,结合了网络结构和功能模型,并应用了相应的韧性评估指标,提出了一种基于Q-Learning算法的并网策略,用以确定风电场的最优并网位置。使用含风力发电的IEEE118电网模型验证了这一策略的有效性。研究显示,基于Q-Learning算法的并网策略在减少运行成本和过载风险方面优于传统启发式方法及遗传算法,强调了合理并网策略在增强电网韧性的关键作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李伟莎
王淑良
宋博
关键词 复杂网络韧性Q-Learning算法风力发电并网    
Abstract:To explore the impact of wind power station grid-connection sites on the resilience of power networks, this paper introduces a new analytical framework for assessing the resilience of wind power network. By integrating the network's structural and functional models and applying relevant resilience assessment metrics, we propose a Q-Learning-based grid-connection strategy to identify the optimal grid-connection locations for wind power station. We validate this strategy using the IEEE 118 power grid model, which incorporates wind power grid-connection. Our research shows that the Q-Learning-based grid-connection strategy surpasses traditional heuristic methods and genetic algorithms in reducing operational costs and the risk of overload, highlighting the crucial role of strategic grid-connection in strengthening the network's resilience.
Key wordscomplex network    resilience    Q-Learning algorithm    wind power grid connection
收稿日期: 2024-03-27      出版日期: 2025-06-03
ZTFLH:  TM614  
  TM743  
基金资助:国家自然科学基金(62373173)
通讯作者: 王淑良(1981),男,山东临沂人,博士,教授,主要研究方向为网络鲁棒性。   
作者简介: 李伟莎(1999),女,山东聊城人,硕士研究生,主要研究方向为可再生能源网络韧性。
引用本文:   
李伟莎, 王淑良, 宋博. 基于强化学习风电并网策略下的韧性分析[J]. 复杂系统与复杂性科学, 2025, 22(2): 128-134.
LI Weisha, WANG Shuliang, SONG Bo. Reinforcement Learning-based Resilience Analysis of Wind Power Grid Under Integration Strategy[J]. Complex Systems and Complexity Science, 2025, 22(2): 128-134.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2025.02.016      或      https://fzkx.qdu.edu.cn/CN/Y2025/V22/I2/128
[1] LIU K, CHEN W, CHEN G, et al. Application and analysis of hydraulic wind power generation technology[J]. Energy Strategy Reviews, 2023, 48: 101117.
[2] 郭明健, 高岩. 基于复杂网络理论的电力网络抗毁性分析[J]. 复杂系统与复杂性科学, 2023, 19(4): 16.
GUO M J, GAO Y. Invulnerability analysis of power network based on complex network[J]. Complex Systems and Complexity Science, 2023, 19(4): 16.
[3] PANI S R, SAMAL R K. Evaluation of power grid vulnerability indices accounting for wind power uncertainty[J]. Sustainable Energy, Grids and Networks, 2024, 38: 101354.
[4] ZHANG H, ZHANG S, CHENG H, et al. Boosting the power grid resilience under typhoon disasters by coordinated scheduling of wind energy and conventional generators[J]. Renewable Energy, 2022, 200: 303319.
[5] LIANG Y, LIN S, FENG X, et al. Optimal resilience enhancement dispatch of a power system with multiple offshore wind farms considering uncertain typhoon parameters[J]. International Journal of Electrical Power & Energy Systems, 2023, 153: 109337.
[6] 陈思谕, 邹艳丽, 王瑞瑞, 等. 电网输电线路耦合强度分配策略研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 4553.
CHEN S Y, ZOU Y L, WANG R R, et al. On the coupling strength distribution strategy of power transmission lines[J]. 2018, 15(2): 4553.
[7] MAYER M J, BIRÓ B, SZÜCS B, et al. Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning[J]. Applied Energy, 2023, 336: 120801.
[8] MEMON Z A, TRINCHERO R, MANFREDI P, et al. Machine Learning for the Uncertainty Quantification of Power Networks[J]. IEEE Letters on Electromagnetic Compatibility Practice and Applications, 2020, 2(4): 138141.
[9] LI Q, ZHANG X, GUO J, et al. Integrating reinforcement learning and optimal power dispatch to enhance power grid resilience[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 69(3): 14021406.
[10] HOSSEINI M M, PARVANIA M. Resilient operation of distribution grids using deep reinforcement learning[J]. IEEE Transactions on Industrial Informatics, 2021, 18(3): 21002109.
[11] ALAVI S M S, MALEKI A, NOROOZIAN A, et al. Simultaneous optimal site selection and sizing of a grid-independent hybrid wind/hydrogen system using a hybrid optimization method based on ELECTRE: A case study in Iran[J]. International Journal of Hydrogen Energy, 2024, 55: 970983.
[12] CACEOĞGLU E, YILDIZ H K, OĞGUZ E, et al. Offshore wind power plant site selection using Analytical Hierarchy Process for Northwest Turkey[J]. Ocean Engineering, 2022, 252: 111178.
[13] UMUNNAKWE A, HUANG H, OIKONOMOU K, et al. Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111252.
[14] AHMADIAN N, LIM G J, CHO J, et al. A quantitative approach for assessment and improvement of network resilience[J]. Reliability Engineering & System Safety, 2020, 200: 106977.
[15] JIANG J, XIA Y, XU S, et al. An asymmetric interdependent networks model for cyber-physical systems[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2020, 30(5): 053135.
[16] ZHANG C, LIU Q, ZHOU B, et al. A central limit theorem-based method for dc and ac power flow analysis under interval uncertainty of renewable power generation[J]. IEEE Transactions on Sustainable Energy, 2023, 14(1): 563575.
     
[1] 陶昭, 侯忠生. 复杂网络的无模型自适应牵制控制[J]. 复杂系统与复杂性科学, 2025, 22(2): 120-127.
[2] 张明磊, 宋玉蓉, 曲鸿博. 基于图注意力机制的复杂网络关键节点识别[J]. 复杂系统与复杂性科学, 2025, 22(2): 113-119.
[3] 张琦, 汪小帆. 复杂网络观点动力学分析与干预若干研究进展[J]. 复杂系统与复杂性科学, 2025, 22(2): 31-44.
[4] 詹秀秀, 叶涛, 刘闯, 刘雪梅. 农产品贸易网络中国家影响力分析与研究[J]. 复杂系统与复杂性科学, 2025, 22(1): 26-32.
[5] 张耀波, 张胜, 王雨萱, 熊聪源. 基于K-shell的复杂网络簇生长维数研究[J]. 复杂系统与复杂性科学, 2025, 22(1): 11-17.
[6] 胡福年, 杨伟丹, 陈军. 基于关键节点的电力信息物理系统鲁棒性评估[J]. 复杂系统与复杂性科学, 2025, 22(1): 43-49.
[7] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[8] 何宇, 田杰鑫, 覃朝晖, 陈珍珍. 基于生产网络视角的中国产业链韧性测度研究[J]. 复杂系统与复杂性科学, 2024, 21(4): 21-27.
[9] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[10] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[11] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[12] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[13] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[14] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[15] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed