Abstract:For the difficulties of modeling and designing proper controllers for complex network control problems, a model free adaptive control based pinning scheme is proposed to control complex network with unknown and nonlinear coupled relationship in this paper. Firstly, a dynamical linearization model is built based on input/output data of selected pinning node, then a distributed pinning scheme is proposed under minimum variance estimation criterion. This scheme is a data-driven control method because it is designed only with I/O data of pinned nodes instead of network model. The stability analysis for the synchronization error is based on the reduction theorem, contraction mapping method and virtual control. The simulation results demonstrate that the proposed pinning scheme can drive all nodes in network to synchronization states by only control the pinned nodes in network.
陶昭, 侯忠生. 复杂网络的无模型自适应牵制控制[J]. 复杂系统与复杂性科学, 2025, 22(2): 120-127.
TAO Zhao, HOU Zhongsheng. Model Free Adaptive Pinning Control for Complex Network[J]. Complex Systems and Complexity Science, 2025, 22(2): 120-127.
[1] ADAMIC L A, HUBERMAN B A, BARABASI A L, ALBERT R, and BIANCONI G. Power-law distribution of the world wide web[J]. Science, 2000, 287(5461): 2115. [2] GUO M, XIA M, CHEN Q. A review of regional energy internet in smart city from the perspective of energy community[J]. Energy Reports, 2022, 8: 161182. [3] GIRVAN M, NEWMAN M. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 12: 99. [4] WANG X, CHEN G. Pinning control of scale-free dynamical networks[J]. Physica A: Statistical Mechanics and Its Applications, 2002, 310(3/4): 521531. [5] LI X, WANG X, CHEN G. Pinning a complex dynamical network to its equilibrium[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2004, 51(10): 20742087. [6] MA Q, LU J. Cluster synchronization for directed complex dynamical networks via pinning control[J]. Neurocomputing, 2013, 101: 354360. [7] ZHAO M, ZHANG H, WANG Z, LIANG H. Synchronization between two general complex networks with time-delay by adaptive periodically intermittent pinning control[J]. Neurocomputing, 2014, 144:215221. [8] XIANG L, LIU Z, CHEN Z, YUAN Z. Pinning weighted complex networks with heterogeneous delays by a small number of feedback controllers[J]. Science in China(Series F), 2008, 51(5): 13. [9] WEI W, ZHOU W, CHEN T. Cluster synchronization of linearly coupled complex networks under pinning control[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, 56(4): 829839. [10] SORRENTINO F, BERNARDO M, GAROFALO F, CHEN G. Controllability of complex networks via pinning[J]. Physical Review E, 2007, 75(4.2): 046103. [11] YU W, CHEN G, LÜ J. On pinning synchronization of complex dynamical networks[J]. Automatica, 2009, 45(2): 429435. [12] 王磊,戴华平,孙优贤.基于复杂网络模型的同步分析及控制[J]. 控制与决策,2008,23(1): 812. WANG L, DAI H P, SUN Y S. Synchronization analysis and control based on complex network models[J]. Control and Decision, 2008,23(1): 812. [13] HOU Z S, WANG Z. From model-based control to data-driven control: survey, classification and perspective[J]. Information Sciences, 2013, 235: 335. [14] 侯忠生. 无模型自适应控制的现状与展望. 控制理论与应用, 2006,23(4): 586592. HOU Z S. On model-free adaptive control: the state of the art and perspective[J]. Control Theory & Applications, 2006, 23(4): 586592. [15] HOU Z S, JIN S T. Model Free Adaptive Control: Theory and Application[M]. Boca Raton, FL, USA: CRC Press, 2014. [16] 侯忠生, 许建新. 数据驱动控制理论及方法的回顾和展望[J]. 自动化学报, 2009, 35(6): 650667. HOU Z S, XU J X. On data-driven control theory: the state of the art and perspective[J]. Acta Automatica Sinica, 2009, 35(6): 650667. [17] FAN A, LI J. Adaptive neural network prescribed performance matrix projection synchronization for unknown complex dynamical networks with different dimensions[J]. Neurocomputing, 2018, 281: 5566. [18] SUAREZ O, VEGA C, SANCHEZ E,CHEN G, ELVIRA-CEJA J, RODRIGUEZ D. Neural sliding-mode pinning control for output synchronization for uncertain general complex networks[J]. Automatica, 2020, 112: 108694. [19] BAGGIO G, BASSETT D, PASQUALETTI F. Data-driven control of complex networks[J]. Nature Communications, 2021, 12(1): 1429. [20] TIAGO P, SEBASTIAN V, MATTEO T. Heterogeneously coupled maps: hub dynamics and emergence across connectivity layers.[J]. Eur Math Soc, 2020,22(7): 21832252. [21] LIU H, LU J, LÜ J, HILL D. Structure identification of uncertain general complex dynamical networks with time delay[J]. Automatica, 2009, 45(8): 17991807. [22] HOU Z S and XIONG S S. On model-free adaptive control and its stability analysis[J]. IEEE Transactions on Automatic Control, 2019, 64(11): 45554569. [23] ZHANG H, ZHOU J, SUN Q, et al. Data-driven control for interlinked AC/DC microgrids via model-free adaptive control and dual-droop control[J]. IEEE Transactions on Smart Grid, 2017, 8(2): 557571. [24] FETANAT M, STEVENS M, HAYWARD C, et. al. A physiological control system for an implantable heart pump that accommodates for interpatient and intrapatient variations[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(4): 11671175 [25] QIU X, WANG Y, ZHANG H, XIE X. Resilient model free adaptive distributed LFC for multi-area power systems against jamming attacks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(8): 41204129. [26] LU Y, Wang X. Pinning control of directed dynamical networks based on ControlRank[J]. International Journal of Computer Mathematics, 2008, 85(8): 12791286. [27] LIU H, XU X, LU J, CHEN G, ZENG Z. Optimizing pinning control of complex dynamical networks based on spectral properties of grounded laplacian matrices[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(2): 786796. [28] GOODWIN G C, SIN K S. Adaptive Filtering Prediction and Control[M]. Englewood Cliffs, NJ: Prentice-Hall, 1984. [29] KURAMOTO Y. Self-entrainment of a population of coupled nonlinear oscillators[J]. International Symposium on Mathematical Problems in Theoretical Physics. 1975, 39:420422. [30] 陈军统,徐振华,项秉铜等.具有控制器增益随机不确定性的多智能体一致性控制[J]. 南京信息工程大学学报(自然科学版), 2019,11(4): 398403. CHEN J T, XU Z H, XIANG B T.Synchronization analysis for general linear complex networks via event-based aperiodically intermittent pinning control[J]. Journal of Nanjing University of Information Science & Technology, 2019,11(4): 398403. [31] RODRIGUES F, PERON T, JI P, KURTHS J. The Kuramoto model in complex networks[J]. Physics Reports, 2016, 610, 198. [32] BARAB ′ASI, R′EKA. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509512. [33] CHEN G R, WANG X F, LI X. Introduction to Complex Networks: Models, Structures and Dynamics[M]. Beijing: High Education Press, 2012.