Abstract:For high aggregation networks, we proposed a new method KEC for identifying important nodes in complex networks, which considered both the local information of nodes and neighbors, that is, the influence factors, and the contribution degree of neighbors to the influence of nodes, and put forward the contribution factor. In eight real networks, the method used the SIR model and deliberate attack experiments to analyze the performance of KEC and six commonly used centrality. Finally, the method used the Kendall-tau correlation coefficient to analyze the correlation between the values of nodes calculated by KEC and six commonly used centrality. The results show that it is effective for KEC to identify influential node sets and improve the destruction resistance of networks, and the Kendall-tau correlation coefficients between KEC and six commonly used centrality are almost positively correlated in eight real networks, which shows that it is feasible for KEC to identify important nodes in complex networks.
孙文静, 余路粉, 潘文林, 蓝春江. 基于节点影响因子和贡献因子的复杂网络重要节点识别[J]. 复杂系统与复杂性科学, 2026, 23(1): 87-95.
SUN Wenjing, YU Lufen, PAN Wenlin, LAN Chunjiang. Identification of Important Nodes in Complex Networks Based on Node Influence Factor and Contribution Factor[J]. Complex Systems and Complexity Science, 2026, 23(1): 87-95.
[1] 杨凡.复杂网络重要节点识别及传播源定位方法的研究[D].甘肃:兰州大学, 2018. YANG F. Research on vital nodes identification and propagation source location in complex networks[D]. Gansu: Lanzhou University, 2018. [2] 徐翔.复杂网络中关键节点识别理论方法研究与应用[D].安徽:安徽工业大学, 2020. XU X. Research and application of key node identification theory and method in complex networks[D]. Anhui: Anhui University of Technology, 2020. [3] 杨国军.复杂网络关键节点识别方法综述[J].现代商贸工业, 2023, 44(12): 263-265. YANG G J. A review of key node identification methods for complex networks[J]. Modern Business Trade Industry, 2023, 44(12): 263-265. [4] 于咏平.面向社交网络重要节点的识别方法及应用研究[D].新疆:新疆财经大学, 2022. YU Y P. Research on identification method and application of influential nodes in social network[D]. Xinjiang: Xinjiang University of Finance & Economics, 2022. [5] 刘子彤,王威,丁国如,等.一种面向有权重通信网络的关键节点识别方法[J].数据采集与处理, 2023, 38(1): 51-62. LIU Z T, WANG W, DING G R, et al. A key node identification approach for weighted communication networks[J]. Journal of Data Acquisition and Processing, 2023, 38(1): 51-62. [6] 马小琦.城市道路交通网络关键节点识别方法研究[D].吉林:吉林大学, 2022. MA X Q. Research on key node identification method of urban road traffic network[D]. Jilin: Jilin University, 2022. [7] 王意.复杂电力网络的动力学行为及关键节点识别研究[D].广西:广西师范大学, 2018. WANG Y. Study of the dynamic behavior and the key node identification on complex power networks[D]. Guangxi: Guangxi Normal University, 2018. [8] LYU L, CHEN D, REN X L, et al. Vital nodes identification in complex networks[J]. Physics Reports, 2016, 650: 1-63. [9] ZHANG Q, LI M, DU Y, et al. Local structure entropy of complex networks[DB/OL].[2023-12-20].http://arxiv.org/abs/1412.3910. [10] RUHNAU B. Eigenvector-centrality—a node-centrality?[J]. Social Networks, 2000, 22(4): 357-365. [11] ZHAO N, YANG S, WANG H, et al. A novel method to identify key nodes in complex networks based on degree and neighborhood information[J]. Applied Sciences, 2024, 14(2): 521. [12] ZHOU F, LÜ L, MARIANI M S. Fast influencers in complex networks[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 74: 69-83. [13] LÜ L, ZHOU T, ZHANG Q M, et al. The H-index of a network node and its relation to degree and coreness[J]. Nature Communications, 2016, 7(1): 10168. [14] KITSAK M, GALLOS L K, HAVLIN S, et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6(11): 888-893. [15] LIU J G, REN Z M, GUO Q. Ranking the spreading influence in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(18): 4154-4159. [16] 谢丽霞,孙红红,杨宏宇,等.基于K-shell的复杂网络关键节点识别方法[J].清华大学学报(自然科学版), 2022, 62(5):849-861. XIE L X, SUN H H, YANG H Y, et al. Key node recognition in complex networks based on the K-shell method[J]. Journal of Tsinghua University(Science and Technology) , 2022, 62(5): 849-861. [17] 熊才权,古小惠,吴歆韵.基于K-shell位置和两阶邻居的复杂网络节点重要性评估方法[J].计算机应用研究, 2023, 40(3): 738-742. XIONG C Q, GU X H, WU X Y. Evaluation method of node importance in complex networks based on K-shell position and neighborhood within two steps[J]. Application Research of Computers, 2023, 40(3): 738-742. [18] LIU Y, WANG J, HE H, et al. Identifying important nodes affecting network security in complex networks[J]. International Journal of Distributed Sensor Networks, 2021, 17(2): 1550147721999285. [19] MAJI G, NAMTIRTHA A, DUTTA A, et al. Influential spreaders identification in complex networks with improved K-shell hybrid method[J]. Expert Systems with Applications, 2020, 144: 113092. [20] FREEMAN L C. A set of measures of centrality based on betweenness[J]. Sociometry, 1977: 35-41. [21] ZHANG K, LI P, ZHU B, et al. Evaluation method for node importance in directed-weighted complex networks based on PageRank[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2013, 45(3): 429-434. [22] YANG Y, WANG X, CHEN Y, et al. Identifying key nodes in complex networks based on global structure[J]. IEEE Access, 2020, 8: 32904-32913. [23] BERAHMAND K, BOUYER A, SAMADI N. A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks[J]. Chaos, Solitons & Fractals, 2018, 110: 41-54. [24] WANG Y, LI H, ZHANG L, et al. Identifying influential nodes in social networks: centripetal centrality and seed exclusion approach[J]. Chaos, Solitons & Fractals, 2022, 162: 112513. [25] 李鹏,王世林,陈光武,等.基于改进的局部结构熵复杂网络重要节点挖掘[J].计算机应用, 2023, 43(4): 1109-1114. LI P, WANG S L, CHEN G W, et al. Key node mining in complex network based on improved local structural entropy[J]. Journal of Computer Applications, 2023, 43(4): 1109-1114. [26] LI P, WANG S, CHEN G, et al. Identifying key nodes in complex networks based on local structural entropy and clustering coefficient[J]. Mathematical Problems in Engineering, 2022, 2022(1):8928765. [27] 张耀波,张胜,王雨萱,等.基于K-shell的复杂网络簇生长维数研究[DB/OL].[2024-04-18]. http://kns.cnki.net/kcms/detail/37.1402.N.20231206.1700.005.html. ZHANG Y B, ZHANG S, WANG Y X, et al. Research on the cluster-growing dimension of complex networks based on K-shell[DB/OL]. [2024-04-18].http://kns.cnki.net/kcms/detail/37.1402.N.20231206.1700.005.html. [28] WU Y, DONG A, REN Y, et al. Identify influential nodes in complex networks: A k-orders entropy-based method[J]. Physica A: Statistical Mechanics and Its Applications, 2023, 632: 129302. [29] 王雅楠. 基于复杂网络结构的链路预测关键算法研究[D].北京:北京邮电大学, 2023. WANG Y N. Research on key algorithms of link prediction based on complex network structure[D]. Beijing: Beijing University of Posts and Telecommunications, 2023. [30] KEELING M J, EAMES K T D. Networks and epidemic models[J]. Journal of the Royal Society Interface, 2005, 2(4): 295-307. [31] CASTELLANO C, PASTOR-SATORRAS R. Thresholds for epidemic spreading in networks[J]. Physical Review Letters, 2010, 105(21): 218701. [32] 赵娜,柴焰明,尹春林,等.基于最大连通子图相对效能的相依网络鲁棒性分析[J].电子科技大学学报, 2021, 50(4): 627-633. ZHAO N, CAI Y M, YIN C L, et al. Robustness analysis of interdependent networks based on the largest-component relative efficiency[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(4): 627-633. [33] 郭明健,高岩.基于复杂网络理论的电力网络抗毁性分析[J].复杂系统与复杂性科学, 2022, 19(4): 1-6. GUO M J, GAO Y. Invulnerability analysis of power network based on complex network [J]. Complex Systems and Complexity Science, 2022, 19(4): 1-6. [34] YANG H, AN S. Critical nodes identification in complex networks[J]. Symmetry, 2020, 12(1): 123. [35] KENDALL M G. A new measure of rank correlation[J]. Biometrika, 1938, 30(1/2): 81-93. [36] ROSSI R, AHMED N. The network data repository with interactive graph analytics and visualization[DB/OL].[2023-10-10].https://doi.org/10.1609/aaai.v29i1.9277. [37] NEWMAN M E J. Finding community structure in networks using the eigenvectors of matrices[J]. Physical Review E, 2006, 74(3): 036104.