Please wait a minute...
文章检索
复杂系统与复杂性科学  2020, Vol. 17 Issue (1): 87-94    DOI: 10.13306/j.1672-3813.2020.01.011
  本期目录 | 过刊浏览 | 高级检索 |
基于年龄结构的中国麻疹传播动态的分析
王旭峰, 王燕芬, 赵继军
青岛大学复杂性科学研究所,青岛 266071
Measles Transmission Dynamics in China Based on Age-Structure Model
WANG Xufeng, WANG Yanfen, ZHAO Jijun
Institute of Complex Science, Qingdao 266071, China
全文: PDF(2340 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 分析中国麻疹不同年龄的被感染风险及传染率的季节性,并分析了儿童间周期性接触及整体人群的周期性接触如何形成我国麻疹传染率的季节性。根据中国2013-2016年麻疹分年龄组的数据,应用感染力分析模型,估算了中国麻疹不同年龄的感染力(即被感染风险);建立了基于年龄结构的具有季节性传染率的时间序列易感者-感染者-恢复者(time series susceptible-infected-recovered,TSIR)模型,并对中国麻疹的传播动态进行分析。模型包含了两种不同的传染率季节性驱动因素:儿童间的周期性接触率、整体人群的周期性接触率,研究了开学放假和春运引起的接触率变化对传染率季节性的影响。结果表明:1)中国麻疹不同年龄的感染力不同,其中<1岁的婴儿感染力最高为24%-44%,其次是50-65岁人群;2)由学期和春运引起的两种周期性接触率都会导致麻疹传染率的季节性,其中开学期间传染率较均值增加31%;3)由春运引起的整体人群接触率的季节性导致春运期间传染率较均值增加23%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王旭峰
王燕芬
赵继军
关键词 麻疹感染力传染率季节性开学放假春运接触率    
Abstract:This paper aims to analyze the force of infection of measles and the seasonality of measles transmission rate at different age groups in China, and to analyze the effect of seasonal children’s contact rate and seasonal population’s contacts on the seasonality of measles transmission rate. Base on the age-stratified reported cases of measles in China from 2013 to 2016, we used the force of infection analysis model to estimate the age-specific force of infection; we established an age-structured time series susceptible-infected-recovered (TSIR) model and analyzed the transmission dynamics of measles in China. The model contains two different driving factors for the measles seasonal transmission: the periodic contact rate among children, and the periodic contact rate of the overall population. Our results show that: 1) the force of infection of measles in China varied across ages with the highest for infants less than one years old (24%-44%) and the second highest for people aged 50-65 years;2) Seasonal contact rates that due to both school terms and Spring Festival travel rush will lead to seasonal transmission rate of measles in China; 3) school terms can increase transmission rate by 31%, and seasonal population contact rate caused by Spring Festival travel rush can increase the transmission rate by 23%.
Key wordsmeasles    force of infection    transmission rate seasonality    school terms    Spring Festival travel rush    contact rate
收稿日期: 2019-07-31      出版日期: 2020-04-29
ZTFLH:  R512.5  
  R181  
基金资助:山东自然科学基金(ZR2018MH037)
通讯作者: 赵继军(1966-),女,山东青岛人,博士,教授,主要研究方向为传染病动态传播。   
作者简介: 王旭峰(1992-),男,甘肃会宁人,硕士研究生,主要研究方向为流行病学动态特性。
引用本文:   
王旭峰, 王燕芬, 赵继军. 基于年龄结构的中国麻疹传播动态的分析[J]. 复杂系统与复杂性科学, 2020, 17(1): 87-94.
WANG Xufeng, WANG Yanfen, ZHAO Jijun. Measles Transmission Dynamics in China Based on Age-Structure Model. Complex Systems and Complexity Science, 2020, 17(1): 87-94.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2020.01.011      或      http://fzkx.qdu.edu.cn/CN/Y2020/V17/I1/87
[1]World Health Organization. Measles fact sheet No. 286[DB/OL].[2019-05-30]. http://www.who.int/immunization/diseases/measles/en/.
[2]World Health Organization. Global measles and rubella strategic plan: 2012[EB/OL]. [2019-05-07].https://www.who.int/iris/handle/10665/44855?locale-attribute=en&.
[3]Wang Lixia, Zeng Guang, Lisa A. Lee, et al. Progress in accelerated measles control in the People’s Republic of China, 1991-2000[J]. Journal of Infectious Diseases, 2003, 187(Sup.1): S252-S257.
[4]Ma C, Hao L X, Zhang Y, et al. Monitoring progress towards the elimination of measles in China: an analysis of measles surveillance data[J]. Bulletin World Health Organ, 2014,92:340-347.
[5]中国疾病预防控制中心.中国2004-2016年麻疹发病数据统计[EB/OL]. [2019-05-07].http://www.phsciencedata.cn/Share/.
Chinese Center for Disease Control and Prevention. Data statistics of measles incidence in China from 2004 to 2016[EB/OL]. [2019-05-07].Available online: http://www.phsciencedata.cn/Share/.
[6]余文周, 税铁军, 李黎, 等. 全国2004-2006年麻疹流行病学特征和预防控制措施分析[J]. 中国计划免疫, 2006,12(5):337-341.
Yu Wenzhou, Shui Tiejun, Li Li, et al. Analysis on epidemiological characteristics and control measures of measles in China during 2004-2006[J]. Chinese Journal of Vaccines and Immunization, 2006,12(5):337-341.
[7]马超,郝利新,苏琪茹,等.中国2014年麻疹流行病学特征分析[J]. 疾病监测, 2015,30(10):318-323.
Ma Chao, Hao Lixin, Zhang Yan, Su Qiru, et al. Measles epidemiology in China, 2014[J]. Disease Surveillance, 2015,30(10):318-323.
[8]许文波. 麻疹病毒的分子流行病学[J]. 中国疫苗和免疫, 2001,7(1):54-59.
Xu Wenbo. The molecular epidemiology of measles virus[J]. Chinese Journal of Vaccines and Immunization, 2001, 7(1):54-59.
[9]梁勇,姬奕昕,张振国.河北省麻疹病毒分子流行病学分析[J]. 中国计划免疫,2006,12(1):21-24.
Linag Yong, Ji Yixin, Zhang Zhenguo. Molecular epidemiology analysis of wild-type measles viruses circulated in Hebei province[J]. Chinese Journal of Vaccines and Immunization, 2006,12(1):21-24.
[10] 汤杰. 麻疹抗体血清学研究现状[J]. 公共卫生与预防医学, 2010, 21(5): 48-49.
Tang Jie. The current situation of measles antibody serology[J]. Journal of Public Health and Preventive Medicine, 2010, 21(5): 48-49.
[11] 陆龙, 曹毅敏, 杨琼英, 等. 小月龄婴儿母传麻疹抗体水平动态变化的纵向研究[J]. 中华流行病学杂志, 2016, 37(5): 663-667.
Lu Long, Cao Yimin, Yang Qiongying, et al. Dynamic maternal measles antibody level in infants: a longitudinal study[J]. Chinese Journal of Epidemiology, 2016, 37(5): 663-667.
[12] 苏琪茹,郝利新,马超.中国2015-2016年麻疹流行病学特征分析[J]. 中国疫苗和免疫, 2018,24(2):146-151.
Su Qiru, Hao Lixin, Ma Chao. Epidemiology of measles in China,2015-2016[J]. Chinese Journal of Vaccines and Immunization, 2018,24(2):146-151.
[13] Chen G, Zhang W, Li S, et al. Is short-term exposure to ambient fine particles associated with measles incidence in China? A multi-city study[J]. Environmental Research, 2017, 156(2017):306-311.
[14] 方海旭, 陈佶, 赵继军. 青岛市麻疹免疫前后传染率分析[J]. 复杂系统与复杂性科学, 2018,15(1):80-85,93.
Fang Haixu, Chen Ji, Zhao Jijun. Analysis of transmission rate of measles in Qingdao[J]. Complex Systems and Complexity Science, 2018,15(1):80-85,93.
[15] Li S, Ma C, Hao L, et al. Demographic transition and the dynamics of measles in six provinces in China: a modeling study[J]. PLoS Medicine, 2017, 14(4): e1002255.
[16] Keeling M J, Rohani P. Modeling Infectious Diseases in Humans and Animals [M]. Princeton: Princeton University Press, 2008.
[17] Vynnycky E, White R G. An Introduction to Infectious Disease Modelling [M]. New York: Oxford University Press, 2010.
[18] Keeling M J, Rohani P, Grenfell B T. Seasonally forced disease dynamics explored as switching between attractors[J]. Physica D: Nonlinear Phenomena, 2001, 148(3): 317-335.
[19] Jackson C, Mangtani P, Fine P, et al. The effects of school holidays on transmission of varicella zoster virus, England and Wales, 1967-2008[J]. Plos One, 2014, 9(9):e99762.
[20] Ferrari M J, Grais R F, Bharti N, et al. The dynamics of measles in sub-Saharan Africa[J]. Nature, 2008, 451(7179): 679.
[21] Schenzle D. An age-structured model of pre- and post-vaccination measles transmission[J]. IMA Journal of Mathematics Applied in Medicine & Biology, 1984,1(2): 169-191.
[22] Rohani P, Zhong X, King A A. Contact network structure explains the changing epidemiology of pertussis[J]. Science, 2010, 330:982-985.
[23] 国家统计局. 中国统计年鉴[M].北京:中国统计出版社,2016.
[24] 仲连发,张志诚,赵继军. 基于年龄结构的中国大陆手足口病流行特性的分析[J]. 中华疾病控制杂志, 2015,19(7):651-654,687.
Zhong Lianfa, Zhang zhicheng, Zhao JIjun. Age-structured model and analysis of hand foot and mouth disease in China[J]. Chinese Journal of Disease Control & Prevention, 2015,19(7):651-654,687.
[25] World Health Organization. Global Health Observatory (GHO) data[EB/OL]. [2019-05-07].https://www.who.int/gho/immunization/measles/en/.
[26] Huang J C, Ruan S G, Wu X, et al. Seasonal transmission dynamics of measles in China[J]. Theory in biosciences. 2018,137(2):185-195.
[27] Kiesha P, Alex R C, Mark J. Projecting social contact matrices in 152 countries using contact surveys and demographic data[J]. PLoS Computational Biology, 2017, 13(9):e1005697.
[28] 马超,郝利新,马静,等. 中国2010年麻疹流行病学特征与消除麻疹进展[J]. 中国疫苗和免疫,2011,17( 3):242-248.
Ma Chao, Hao Lixin, Ma Jing, et al. Measles epidemiological characteristics and progress of measles elimination in China,2010[J]. Chinese Journal of Vaccines and Immunization, 2011,17(3):242-248.
[29] Li Meina, Liu Xiaodong, Zhang Lulu. Measles vaccination and prevention in big cities in China[J]. Human Vaccines & Immunotherapeutics, 2015, 11(7): 1777-1778.
[30] 李立,张月花,刘文和,等.冻干及液体麻疹疫苗的临床反应和免疫后五年效果观察[J]. 福建医药杂志,1985( 5):17-19.
Li Li, Zhang Yuehua, Liu Wenhe, et al. Observation of clinical reactions following vaccination and vaccine effectiveness 5 years following vaccination of liquid and lyophilized measles vaccine[J]. Fujian Medical Journal, 1985(5):17-19.
[31] 赵佳楠, 薛超, 仲连发,等. 重庆市手足口病接触率及感染力分析[J]. 科学通报, 2016, 61(22): 2475-2482.
Zhao Jianan, Xue Chao, Zhong Lianfa, et al. Transmission rate and contact force analysis of hand foot and mouth disease in Chongqing[J]. Chinese science Bulletin, 2016, 61(22): 2475-2482.
[32] Wallinga J, Teunis P, Kretzschmar M. Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents[J]. American Journal of Epidemiology,2006,164(10):936-944.
[33] Keeling M J, Grenfell B T. Understanding the persistence of measles: reconciling theory, simulation and observation[J]. Proceedings of the Royal Society B-Biological Sciences, 2002,269(1489):335-343.
[1] 王燕芬, 王旭峰, 赵继军. 中国各省、自治区与直辖市手足口病传染率分析[J]. 复杂系统与复杂性科学, 2019, 16(3): 79-86.
[2] 方海旭, 陈佶, 赵继军. 青岛市麻疹免疫前后传染率分析[J]. 复杂系统与复杂性科学, 2018, 15(1): 80-85.
[3] 方海旭, 赵继军. 近20年中国麻疹的流行与防控[J]. 复杂系统与复杂性科学, 2018, 15(1): 86-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed