Abstract:Complexity science, as a new crossing discipline, has penetrated into every field of economy and society. The purpose of this paper is to study the complexity of science in the era of big data. Based on complex network theory combined with the improved traffic flow simulation model, this paper studies effect of VSL to dynamic traffic, and then analyzes the optimal control strategy of VSL in different network topology. The results show that the optimal variable speed limit control strategy can optimize the traffic state of the network. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help department of traffic management.
李树彬, 傅白白, 孙涛, 党文修, 高歌. 复杂网络中观交通流动态限速控制策略研究[J]. 复杂系统与复杂性科学, 2017, 14(4): 32-42.
LI Shubin, FU Baibai, SUN Tao, DANG Wenxiu, GAO Ge. Research on Complex Network Mesoscopic Traffic Flow with Dynamic Limit Speed Control Strategies. Complex Systems and Complexity Science, 2017, 14(4): 32-42.
[1]Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks [J]. Nature, 1998, 393(6684): 440442. [2]Barabási A L, Albert R. Emergence of scaling in random networks [J]. Science, 1999, 286(5439): 509512. [3]Cui D, Gao Z Y, Zhao X M. Cascades with coupled map lattices in preferential attachment community networks [J]. Chinese Physics B, 2008, 17(5): 17031708. [4]Zhang Z, Fu Z Q, Yan G. Synchronization speed of identical oscillators on community networks [J]. Chinese Physics B, 2009, 18(6): 22092212. [5]Cui D, Gao Z Y, Zheng J F. Properties of asymmetrically evolved community networks [J]. Chinese Physics B, 2009, 18(2): 516521. [6]杜海峰,李树茁, Marcus W F, 等. 小世界网络与无标度网络的社区结构研究 [J]. 物理学报, 2007, 56(12): 68876892. Du Haifeng, Li Shuzhuo, Marcus W F,et al. Community structure in small-world and scale-free networks [J]. Acta Physica Sinica, 2007, 56(12): 68876892. [7]李季,汪秉宏,蒋品群, 等. 节点数加速增长的复杂网络生长模型 [J]. 物理学报, 2006, 55(8): 40514057. Li J, Wang Binghong, Jiang Pinqun,et al. Growing complex network model with acceleratingly increasing number of nodes [J]. Acta Physica Sinica, 2006, 55(8): 40514057. [8]赵明,汪秉宏,蒋品群, 等. 复杂网络上动力系统同步的研究进展 [J]. 物理学进展, 2005, 25(3): 273295. Zhao Ming, Wang Binghong,Jiang Pinqun,et al. Recent advancement in research of synchronization of dynamical systems on complex networks [J]. Progress in physics, 2005, 25(3): 273295. [9]罗群,吴薇,李丽香, 等. 节点含时滞的不确定复杂网络的自适应同步研究 [J]. 物理学报, 2008, 57(3): 15291534. Luo Qun,Wu Wei,Li Lixiang,et al. Adaptive synchronization research on the uncertain complex networks with time-delay [J]. Acta Physica Sinica, 2008, 57(3): 15291534. [10] Wu J J, Gao Z Y, Sun H J. Simulation of traffic congestion with SIR model [J]. Modern Physics Letters B, 2004, 18(30): 15371542. [11] Wu J J, Gao Z Y, Sun H J. Complexity and efficiency of Beijing transit network [J]. International Journal of Modern Physics B, 2006, 20: 2129. [12] Wu J J, Gao Z Y, Sun H J. Cascade and breakdown in scale-free net-works with community structure [J]. Physical Review E, 2006, 74(6): 066111. [13] Gupta A K, Sharma S. Nonlinear analysis of traffic jams in an anisotropic continuum model [J]. Chinese Physics B, 2010, 19(11): 110503. [14] Gupta A K, Sharma S. Analysis of the wave properties of a new two-lane continuum model with the coupling effect [J]. Chinese Physics B, 2012, 21(1): 015201. [15] Peng G H, Cai X H, Cao B F, et al. A new lattice model of traffic flow with the consideration of the traffic interruption probability [J]. Physica A, 2012, 391(3): 656. [16] 曾友志,张宁,刘利娟. 考虑司机扰动风险偏好异质的跟驰模型 [J]. 物理学报, 2014, 63(6): 378384. Zeng Youzhi, Zhang Ning, Liu Lijuan. A new car-following model considering drivers’ heterogeneity of the disturbance risk appetite [J]. Acta Physica Sinica, 2014, 63(6): 378384. [17] 敬明,邓卫,王昊, 等. 基于跟车行为的双车道交通流元胞自动机模型 [J], 物理学报, 2012, 61(24): 323331. Jing Ming,Deng Wei, Wang Hao,et al. Two-Lane cellular automaton traffic model based on car following behavior [J]. Acta Physica Sinica, 2012, 61(24): 323331. [18] Lakouari N, Bentaleb K, Ez-Zahraouy H, et al. Correlation velocities in heterogeneous bidirectional cellular automata traffic flow [J]. Physica A:Statistical Mechanics and its Applications, 2015, 439: 132141. [19] Yang D, Qiu X P, Yu D,et al. A celluar automata model for car-truck heterogeneous traffic flow considering the car-trunk following combination effect [J]. Physica A: Statistical Mechanics and Its Applications, 2015, 424: 6272. [20] 华雪东,王炜,王昊. 考虑驾驶心理的城市双车道交通流元胞自动机模型 [J]. 物理学报, 2011, 60(8): 084501084508. Hua Xuedong, Wang Wei, Wang Hao. A two-lane cellular automaton traffic flow model with the influence of driving psychology [J]. Acta Physica Sinica, 2011, 60(8): 084501084508. [21] 汪秉宏,文旭,许伯铭. 复杂网络 [M]. 上海: 上海科技教育出版社, 2006: 247261. Wang Binghong H, Wang Wenxu, Xu Boming. Complex Neworks [M]. Shanghai: Shanghai Scientific and Technological Education Press, 2006: 247261. [22] 华雪东,王炜,王昊. 考虑自适应巡航车辆影响的上匝道系统混合交通流模型 [J]. 物理学报, 2016, 65(8): 084503. Hua Xuedong, Wang Wei, Wang Hao. A hybrid traffic flow model with considering the influence of adaptive cruise control vehicles and onramps [J]. Acta Physica Sinica, 2016, 65(8): 084503. [23] 华雪东,王炜,王昊. 考虑车与车互联通讯技术的交通流跟驰模型 [J]. 物理学报, 2016, 65(1): 5263. Hua Xuedong, Wang Wei, Wang Hao. A car-following model with the consideration of vehicle-to-vehicle communication technology [J]. Acta Physica Sinica, 2016, 65(1): 5263. [24] 薛郁,董力耘,戴世强. 一种改进的一维元胞自动机交通流模型及减速概率的影响 [J]. 物理学报, 2001, 50(3): 445449. Xue Yu, Dong Liyun, Dai Shiqiang. Model of traffic flow and the effect of deceleration probability [J]. Acta Physica Sinica, 2001, 50(3): 445449. [25] 雷丽,薛郁,戴世强. 交通流的一维元胞自动机敏感驾驶模型 [J]. 物理学报, 2003, 52(9): 21212126. Lei Li, Xue Yu, Dai Shiqiang. One-dimensional sensitive driving cellular automaton model for traffic flow [J]. Acta Physica Sinica, 2003, 52(9): 21212126. [26] Fang Y, Chen J Z, Peng Z Y. The effect of moving bottlenecks on a two-lane traffic flow [J]. Chinese Physics B, 2013, 22(10): 108902. [27] Zheng Y Z, Zheng P J,Ge H X. An improved car-following model with consideration of the lateral effect and its feedback control research [J]. Chinese Physics B, 2014, 23(2): 020503. [28] Ling X, Hu M B, Jiang R, et al. Global dynamic routing for scale-free networks [J]. Physical Review E, 2010, 81(1): 016113. [29] Tang T Q, Huang H J, Wong S C, et al. A new car-following model with consideration of the traffic interruption probability [J]. Chinese Physics B, 2009, 18(3): 09750983. [30] 李树彬,吴建军,高自友, 等. 基于复杂网络的交通拥堵与传播动力学分析 [J]. 物理学报, 2011, 60(5): 050701. Li Shubing, Wu Jianjun, Gao Ziyou, et al. The analysis of traffic congestion and dynamic propagation properties based on complex network [J]. Acta Physica Sinica, 2011, 60(5): 050701. [31] Chang G, Park S Y, Paracha J. Intelligent transportation system field demonstration integration of variable speed limit control and travel time estimation for a recurrently congested highway [J]. Transportation Research Record: Journal of the Transportation Research Board, 2011, 2243: 5566. [32] Chang G, Park S. Field evaluation of variable speed limit control for contending with recurrent highway congestion [R]. Maryland State Highway Research Report, 2010, MD09SP708B4B. [33] 王薇,杨兆升,赵丁选. 有限阶段马尔可夫决策的可变限速控制模型 [J]. 交通运输工程学报, 2011, 11(5): 109114. Wang Wei, Yang Zhaosheng, Zhao Ddingxuan. Control model of variable speed limit based on finite horizon Markov decision-making [J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 109114. [34] Abde-aty M, Cunningham R J, Gayah V V, et al. Dynamic variable speed limit strategies for real-time crash risk reduction on freeways [J]. Transportation Research Record, 2008, 2078: 108116. [35] 蒲云,胡路,蒋阳升, 等. 高速公路主线收费站可变限速控制 [J]. 交通运输工程学报, 2012, 12(5): 119126. Pu Yun, Hu Lu,J iang Yangsheng, et al. Variable speed-limit control before expressway mainline toll station [J]. Journal of Traffic and Transportation Engineering, 2012, 12(5): 119126. [36] 张晶晶,庞明宝,任沙沙. 基于元胞自动机模型的高速公路可变速度限制交通流特性分析 [J]. 物理学报, 2012, 61(24): 24450318. Zhang Jingjing, Pang Mingbao, Ren Shasha. Characteristic analysis of traffic flow in variable speed limit section of freeway based on cellular automaton model [J]. Acta Physica Sinica, 2012, 61(24): 24450318. [37] 李树彬. 城市交通系统运行状态评估及控制策略研究 [D]. 北京:北京交通大学, 2012. Li Shubin. Research on the run state evaluation of urban transportation system and control strategies [D]. Beijing: Beijing Jiaotong University, 2012. [38] 谢东繁 基于微观模型的城市道路交通流若干典型问题研究 [D]. 北京:北京交通大学, 2010. Xie Dongfan. Analyzing of typical problems of urban road traffic flow based on microscopic models [D]. Beijing:Beijing Jiaotong University, 2010. [39] 王涛. 基于格子流力学模型的交通流建模及仿真研究 [D]. 北京:北京交通大学, 2015. Wang Tao. Research on traffic flow modeling and simulating based on the lattice hydrodynamic model [D]. Beijing:Beijing Jiaotong University, 2015. [40] Xie D F, Gao Z Y, Zhao X M. The effect of ACC vehicles to mixed traffc flow consisting of manual and ACC vehicles [J]. Chinese Physics B, 2008, 17(12): 44404445. [41] Jiang B,Claramunt C. Topological analysis of urban street networks [J]. Environment and Planning B, 2004, 31: 151162. [42] Gao Z Y, Li K P, Li X G, et al. Scaling laws of the network traffic flow [J]. Physica A, 2007, 380: 577584. [43] Wu J J, Gao Z Y,Sun H J. Urban transit system as a scale-free network [J]. Modern Physics Letters B, 2004, 18: 10431049. [44] Erdö s P, Ré nyi A. Publications of the mathematical institute of the hungarian academy of science [J]. Graph Theory, 1960, 5(1): 1761. [45] 吴建军. 城市交通拓扑结构复杂性研究 [D]. 北京:北京交通大学, 2008. Wu Jianjun. Topological structure complexity of urban traffic research [D]. Beijing:Beijing Jiaotong University, 2008.