Please wait a minute...
文章检索
复杂系统与复杂性科学  2018, Vol. 15 Issue (2): 45-53    DOI: 10.13306/j.1672-3813.2018.02.006
  本期目录 | 过刊浏览 | 高级检索 |
电网输电线路耦合强度分配策略研究
陈思谕, 邹艳丽, 王瑞瑞, 谭华珍
广西师范大学电子工程学院, 广西 桂林 541004
On the Coupling Strength Distribution Strategy of Power Transmission Lines
CHEN Siyu, ZOU Yanli, WANG Ruirui, TAN Huazhen
School of Electronics Engineering, Guangxi University, Guilin, 541004, China
全文: PDF(6254 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为研究耦合强度分配策略对电力系统同步和稳定性的影响,探究提高电网性能的耦合强度分配方式,提出三种电网输电线路耦合强度分配策略(EQ,TP,LB)。EQ分配方式,各线路耦合强度均相等;TP分配方式,各线路耦合强度按系统等耦合强度同步运行状态下,线路传输功率的绝对值大小正比分配;LB分配方式,线路耦合强度按边介数大小正比分配。本文在IEEE14、IEEE30、IEEE39、IEEE57标准测试网络、BA无标度网络、NW小世界网络上进行仿真实验,从电网的同步和稳定性两个方面比较三种输电线路耦合强度分配策略的优劣。研究表明,输电线路耦合强度按TP方式分配时,电网的同步和稳定性能皆为最佳;按LB方式分配时,电网的同步和稳定性能均为最差;按EQ方式分配时,电网的同步和稳定性能居中。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈思谕
邹艳丽
王瑞瑞
谭华珍
关键词 电力网络耦合强度传输功率边介数同步稳定性    
Abstract:In order to study the influence of the coupling strength distribution strategy for synchronization and stability of power grids,to explore a coupling mode to improve the synchronizability and stability of power grids, this paper proposes three coupling strength distribution strategies of power transmission lines, which are named EQ, TP and LB. Respertively, the EQ strategy means that all the line coupling strengths are equal. The TP strategy means that the coupling strength of a line is proportional to its power distribution which value is the case that synchronization is achieved with the equal coupling. The LB strategy means that a line coupling strength is proportion to its link betweenness. Simulation experiment is carried out on IEEE14, IEEE30, IEEE39, IEEE57 standard test net, as well as BA scale-free network and NW small-world network.The advantages and disadvantages of these three strategies are compared through synchronizability and stability of power grids. Study shows that the TP strategy is the best one, the LB strategy is the worst one among the three, the performance of the EQ strategy is in the middle.
Key wordspower grid    coupling strength    transmission power    link betweenness    synchronization    stability
收稿日期: 2018-06-20      出版日期: 2019-01-09
ZTFLH:  TM711  
基金资助:国家自然科学基金(11562003);广西多源信息挖掘与安全重点实验室系统性研究课题基金(13-A-02-03)
通讯作者: 邹艳丽(1972-),女,河北沧州人,博士,教授,主要研究方向为非线性电路系统的混沌控制与同步、复杂网络的控制与同步。   
作者简介: 陈思谕(1989-),男,广西玉林人,硕士研究生,主研方向为复杂网络理论及其应用。
引用本文:   
陈思谕, 邹艳丽, 王瑞瑞, 谭华珍. 电网输电线路耦合强度分配策略研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 45-53.
CHEN Siyu, ZOU Yanli, WANG Ruirui, TAN Huazhen. On the Coupling Strength Distribution Strategy of Power Transmission Lines. Complex Systems and Complexity Science, 2018, 15(2): 45-53.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2018.02.006      或      http://fzkx.qdu.edu.cn/CN/Y2018/V15/I2/45
[1]方锦清,汪小帆,郑志刚,等.一门崭新的交叉科学:网络科学(上)[J].物理学进展,2007,(3):239-343.
Fang Jinqing, Wang Xiaofan, Zheng Zigang, et al. New interdisciplinary science: network science(1) [J].Progress in Physics, 2007,(3):239-343.
[2] 汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006:260.
[3]Lopes M A, Lopes E M, Yoon S, et al. Synchronization in the random-field Kuramoto model on complex networks[J]. Phys rev e, 2016, 94(1):012308.
[4]Yi C, Feng J, Zhao Y. Synchronization of nonlinear coupled networks with time-delay via aperiodically intermittent pinning control[C]// Chinese Control Conference. Dalian, China, 2017:226-231.
[5]Zhang T. Adaptive Synchronization in multi-coupled dynamic network[C]// International Conference on Materials Science, Machinery and Energy Engineering. Chengdu, China, 2017, 123: 1545-1550.
[6]Lozano S, Buzna L, Díaz-Guilera A. Role of network topology in the synchronization of power systems[J]. European Physical Journal B, 2012, 85(7):1-8.
[7]Filatrella G, Nielsen A H, Pedersen N F. Analysis of a power grid using a Kuramoto-likemodel[J]. European Physical Journal B, 2008, 61(4):485-491.
[8]谢蓉, 邹艳丽, 傅杰. 基于动力学的电网发电机故障恢复策略研究[J]. 广西师范大学学报(自然科学版), 2017, 35(1):1-6.
Xie Rong, Zou Yanli, Fu Jie. Research on the strategy of Fault generator recovery based on the dynamics in the power grid[J].Journal of Guangxi Normal University(Natural Dcience Edition) , 2017, 35(1):1-6.
[9]Rohden M, Sorge A, Witthaut D, et al. Impact of network topology on synchrony of oscillatory power grids[J]. Chaos, 2014, 24(1):586.
[10] 傅杰, 邹艳丽, 谢蓉. 结合网络动力学的电网关键节点识别[J]. 复杂系统与复杂性科学, 2017, 14(2):31-38.
Fu Jie, Zou Yanli, Xie Rong.Identification of critical nodes in a power network with considering the network dynamics[J]. Complex Systems and Complexity Science, 2017, 14(2):31-38.
[11] 王意. 复杂电力网络的动力学行为及关键节点识别研究[D].桂林:广西师范大学, 2017.
Wang Yi. Study of the dynamic behavior and the key node identification on complex power networks[D]. Gui Lin: Guangxi Normal University,2017.
[12] 傅杰, 邹艳丽, 谢蓉. 基于复杂网络理论的电力网络关键线路识别[J]. 复杂系统与复杂性科学, 2017(3):91-96.
Fu Jie, Zou Yanli, Xie Rong. The critical lines identification of the power grid based on the complex network theory[J]. Complex Systems and Complexity Science, 2017(3):91-96.
[13] Carareto R, Baptista M S, Grebogi C. Natural synchronization in power-grids with anti-corelated units[J].Communications in Nonlinear Science & Numerical Simulation, 2013, 18(4): 1035-1046.
[14] Rohden M, Sorge A, Timme M, et al. Self-organized synchronization in decentralized power grids[J]. Physical Review Letters, 2012, 109(6):064101.
[15] Witthaut D, Timme M. Braess's paradox in oscillator networks, desynchronization and power outage[J]. New Journal of Physics, 2012, 14(1):83036-83051(16).
[16] 董政呈,方彦军,田猛.不同耦合方式和耦合强度对电力-通信耦合网络的影响[J].高电压技术,2015,41(10):3464-3469.
Dong Zhengcheng, Fang Yanjun, Tian Meng. Influences of various coupled patterns and coupling strength on power-communication coupled networks[J].High Voltage Engineering, 2015,41(10):3464-3469.
[17] Nishikawa T, Motter A E. Comparative analysis of existing models for power-grid synchronization[J]. New Journal of Physics, 2015, 17(1):015012.
[18] Manik D, Rohden M, Ronellenfitsch H, et al. Network susceptibilities: Theory and applications[J]. Physical Review E, 2017, 95(1-1):012319.
[19] 王曦, 张新刚. 不同耦合方式下相依网络的级联故障评估[J]. 电子技术应用, 2017, 43(4):112-116.
Wang Xi, Zhang Xingang. Evaluation of cascading failure of interdependent network under several coupling preferences[J]. Application of Electronic Technique, 2017, 43(4):112-116.
[20] Acebrón J A, Bonilla L L, Vicente C J P, et al. The kuramotomodel:a simple paradigm for synchronization phenomena[J]. Reviews of Modern Physics, 2005, 77(1):137-1.
[21] Giuliano A P, Marco A.The power grid as a complex network: a survey[J].Physica A, 2013, 392: 2688-2700.
[22] Chia C C, Herbert H C.Complex networks theory for modern smart grid applications: a survey[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2017, 7(2):177-19.
[1] 朱伟, 陈坤, 王谦, 朱弘钊. 基于自适应滑模控制的分数阶蔡氏电路系统动力学分析与控制[J]. 复杂系统与复杂性科学, 2018, 15(2): 88-94.
[2] 高子林, 王银河. 一类不确定混沌系统的自适应模糊同步控制[J]. 复杂系统与复杂性科学, 2017, 14(4): 79-88.
[3] 李云, 宋运忠. 基于混合模式的BA无标度网络同步研究[J]. 复杂系统与复杂性科学, 2017, 14(4): 89-96.
[4] 傅杰, 邹艳丽, 谢蓉. 基于复杂网络理论的电力网络关键线路识别[J]. 复杂系统与复杂性科学, 2017, 14(3): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed