Please wait a minute...
文章检索
复杂系统与复杂性科学  2018, Vol. 15 Issue (4): 85-89    DOI: 10.13306/j.1672-3813.2018.04.011
  本期目录 | 过刊浏览 | 高级检索 |
最优加权随机汇池网络的自适应算法研究
韩博, 景文腾, 耿金花, 段法兵
青岛大学复杂性科学研究所,山东 青岛 266071
Study of Adaptive Algorithms for Optimally Weighted Stochastic Pooling Networks
HAN Bo, JING Wenteng, GENG Jinhua, DUAN Fabing
Institute of Complexity Science, Qingdao University, Qingdao 266071, China
全文: PDF(1202 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 对最优加权随机汇池网络的自适应算法进行研究,以均方误差作为随机汇池网络输出性能评价指标,推导了最小均方(LMS)和Kalman-LMS算法的递归表达式,并应用到输入信号方差发生改变的非稳态情况中,结果表明两种自适应算法都能够迭代收敛到权的最优解。与LMS算法相比,Kalman-LMS算法不仅收敛速度快,而且权均方偏差每一步都是最优的,在网络节点的个数较少时,Kalman-LMS算法能够获得更小的均方误差,而随着网络节点的个数增加,两种自适应算法得到的均方误差趋于一致。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩博
景文腾
耿金花
段法兵
关键词 随机汇池网络均方误差最小均方自适应算法非稳态信号    
Abstract:In this paper, the adaptive algorithm of optimally weighted stochastic pool network is studied. The mean square error is used as the output performance evaluation index of the stochastic pooling network. The recursive expressions of the least mean square (LMS) algorithm and the Kalman-LMS algorithm are derived. The related results show that, for the nonstationary case of varying variances of inputs, both adaptive algorithms can converge to the optimal solution of weight vectors. However, the Kalman-LMS algorithm not only has a fast convergence speed, but also the weight mean square deviation is optimal at each step. When the number of network nodes is small, Kalman-LMS can obtain a smaller mean square error. As the number of network nodes increases, the mean square error obtained by the two adaptive algorithms tends to be consistent.
Key wordsstochastic pooling networks    mean square error    least mean square    adaptive algorithm    nonstationary signal
     出版日期: 2019-05-16
ZTFLH:  TN911.7  
基金资助:国家自然科学基金(61573202)
通讯作者: 段法兵(1974),男,山东邹城人,博士,教授,主要研究方向为非线性信号处理。   
作者简介: 韩博(1996),男,山东济宁人,硕士研究生,主要研究方向为自适应信号处理研究。
引用本文:   
韩博, 景文腾, 耿金花, 段法兵. 最优加权随机汇池网络的自适应算法研究[J]. 复杂系统与复杂性科学, 2018, 15(4): 85-89.
HAN Bo, JING Wenteng, GENG Jinhua, DUAN Fabing. Study of Adaptive Algorithms for Optimally Weighted Stochastic Pooling Networks. Complex Systems and Complexity Science, 2018, 15(4): 85-89.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2018.04.011      或      http://fzkx.qdu.edu.cn/CN/Y2018/V15/I4/85
[1]Mcdonnell M D, Amblard P O, Stocks N G. Stochastic pooling networks [J]. Journal of Statistical Mechanics Theory & Experiment, 2009, 10(1):01012.
[2]Mcdonnell M D, Abbott D, Pearce C E M. An analysis of noise enhanced information transmission in an array of comparators [J]. Microelectronics Journal, 2002, 33(12):10791089.
[3]Nguyen T. Robust data-optimized stochastic analog-to-digital converters [J]. IEEE Transactions on Signal Processing, 2007, 55(6):27352740.
[4]Panzeri S, Petroni F, Petersen R S, et al. Decoding neuronal population activity in rat somatosensory cortex: role of columnar organization [J]. Cerebral Cortex, 2003, 13(1):4552.
[5]Hoch T, Wenning G, Obermayer K. Optimal noise-aided signal transmission through populations of neurons [J]. Physical Review E, 2003, 68(1):011911.
[6]Nikitin A, Stocks N G, Morse R P. Enhanced information transmission with signal-dependent noise in an array of nonlinear elements [J]. Physical Review E, 2007, 75(2 Pt 1):021121.
[7]Zozor S, Amblard P O, Duchêne C. On pooling networks and fluctuation in suboptimal detection framework [J]. Fluctuation & Noise Letters, 2007, 7(1):3960.
[8]Martorell F, Rubio A. Cell architecture for nanoelectronic design [J]. Microelectronics Journal, 2008, 39(8):10411050.
[9]Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance [J]. Journal of Physical A, 1981, 14(11):453458.
[10] Gammaitoni L, Hnggi P, Jung P, et al. Stochastic resonance [J]. Reviews of Modern Physics, 2008, 70(1):45105.
[11] Dykman M I, Mcclintock P V E. What can stochastic resonance do? [J]. Nature, 1998, 391(6665):344.
[12] Kay S. Can detectability be improved by adding noise? [J]. IEEE Signal Processing Letters, 2000, 7(1):810.
[13] Abbott D. Overview: unsolved problems of noise and fluctuations.[J].Chaos. 2001,11(3):526538.
[14] Oliaei O. Stochastic resonance in sigma-delta modulators[J]. Electronics Letters, 2003, 39(2):173174.
[15] Mcdonnell M D, Stocks N G, Pearce C E M, et al. Analog-to-digital conversion using suprathreshold stochastic resonance[J]. Smart Structures, Devices, and Systems II, 2005,5649(1/3):7584.
[16] Widrow B, McCool J M, Larimore M G, et al. Stationary and nonstationary learning characteristics of the LMS adaptive filter [J].Proceedings of the IEEE, 1976,64(8):11511162.
[17] Widrow B, Walach E. On the statistical efficiency of the LMS algorithm with nonstationary inputs[J]. IEEE Transactions on Information Theory, 1984, 30(2):211221.
[18] Kalman R. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering Transactions, 1960, 82(D): 3545.
[19] Mandic D P, Kanna S, Constantinides A G. On the Intrinsic relationship between the least mean square and Kalman filters[J]. IEEE Signal Processing Magazine, 2015, 32(6):117122.
[20] Xu L, Duan F, Gao X, et al. Adaptive recursive algorithm for optimal weighted suprathreshold stochastic resonance[J]. Royal Society Open Science. 2017,4(9):112.
[21] 景文腾, 韩博, 耿金花,等.最优加权随机汇池网络估计性能研究[J].复杂系统与复杂性科学,2018, 15(3):8993.
Jing Wenteng,Han Bo,Gend Jinhua, et al. Study of estimation performance of optimally weighted stochastic pooling networks[J].Complex System and Complexity Science, 2018, 15(3):8993.
[22] Widrow B, Stearns S D. Adaptive Signal Processing[M].王永德,龙宪惠,译.四川:四川大学出版社,1991.
[23] Xu L, Vladusich T, Duan F, et al. Decoding suprathreshold stochastic resonance with optimal weights[J].Physics Letters A. 2015, 379(38): 22772283.
[1] 景文腾, 韩博, 耿金花, 许丽艳, 段法兵. 最优加权随机汇池网络的估计性能研究[J]. 复杂系统与复杂性科学, 2018, 15(3): 89-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed