Please wait a minute...
文章检索
复杂系统与复杂性科学  2019, Vol. 16 Issue (1): 26-35    DOI: 10.13306/j.1672-3813.2019.01.003
  本期目录 | 过刊浏览 | 高级检索 |
融合邻域鲁棒性及度均衡性的集体影响中心性
宋甲秀, 杨晓翠, 张曦煌
江南大学物联网工程学院,江苏 无锡 214122
Collective Influence Centrality Combining Neighborhood Robustness and Degree Equilibrium
SONG Jiaxiu, YANG Xiaocui, ZHANG Xihuang
School of Internet of Things Engineering,Jiangnan University,Wuxi 214122, China
全文: PDF(1561 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 集体影响(CI)中心性是众多节点影响力度量方法的最新成果之一。该方法针对局部树状网络,将节点在网络全局连接中的重要性视为其影响力的表征,但其忽视了各节点邻域分布以及局部网络结构健壮程度的差异。故本文在CI中心性的基础上,对局部网络拓扑中目标节点的邻域鲁棒性、l阶邻居的度分布情况以及l阶邻域簇间连接强度等影响因素进行分析、定义和量化,构造出普适性更高的中心性度量方法NewCI,来评价节点影响力。通过在6个真实的复杂网络数据集进行的网络抗毁性实验,表明该中心性度量方法整体表现稳定,且对节点影响力的度量较于CI更为有效和准确。此外,综合考虑有效性、时间复杂度和执行效率,NewCI相比常用的中心性方法,具有更大的优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋甲秀
杨晓翠
张曦煌
关键词 影响力度量方法集体影响中心性邻域鲁棒性度分布簇间连接强度    
Abstract:Collective influence (CI) centrality is one of the latest achievements in the measurement of node influences, which is designed based on the locally tree-like network and regards the importance of nodes in the global connection as the representation of their influence. However, it ignores the neighborhood distribution of each node and the difference in the robustness of the local network structure. Therefore, based on CI centrality, the influencing factors in the local network topology such as the neighborhood robustness of the target node, the degree distribution of the l-order neighbors and the connection strength between clusters of the l-order neighborhood are analyzed, defined and quantified. Then, a more universal centrality measurement method called NewCI is proposed to evaluate the influence of nodes. The stability of its overall performance and its better effectiveness and accuracy over CI in node influence measurement are demonstrated by the network invulnerability experiments in six real complex network datasets. Considering the effectiveness, time complexity and execution efficiency, NewCI also has a greater advantage than other commonly used centrality method.
Key wordsinfluence measurement methods    collective influence centrality    neighborhood robustness    degree distribution    connection strength between clusters
收稿日期: 2019-01-10      出版日期: 2019-07-04
ZTFLH:  TP393  
基金资助:江苏省产学研合作项目基金(201501930)
作者简介: 宋甲秀(1993),男,山西静乐人,硕士研究生,主要研究方向为复杂网络,数据挖掘。
引用本文:   
宋甲秀, 杨晓翠, 张曦煌. 融合邻域鲁棒性及度均衡性的集体影响中心性[J]. 复杂系统与复杂性科学, 2019, 16(1): 26-35.
SONG Jiaxiu, YANG Xiaocui, ZHANG Xihuang. Collective Influence Centrality Combining Neighborhood Robustness and Degree Equilibrium. Complex Systems and Complexity Science, 2019, 16(1): 26-35.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2019.01.003      或      http://fzkx.qdu.edu.cn/CN/Y2019/V16/I1/26
[1] Morone F, Makse H A. Influence maximization in complex networks through optimal percolation[J]. Nature, 2015, 524(7563): 65.
[2] Teng X, Pei S, Morone F, et al. Collective influence of multiple spreaders evaluated by tracing real information flow in large-scale social networks[J]. Scientific reports, 2016, 6: 36043.
[3] Pei S, Teng X, Shaman J, et al. Efficient collective influence maximization in cascading processes with first-order transitions[J]. Scientific Reports, 2017, 7: 45240.
[4] Kitsak M, Gallos L K, Havlin S, et al. Identification of influential spreaders in complex networks[J]. Nature physics, 2010, 6(11): 888.
[5] Min B, Morone F, Makse H A. Searching for influencers in big-data complex networks[J]. Diffusive spreading in nature, technology and society. Springer, Cham, 2016.
[6] Pei S, Morone F, Makse H A. Theories for influencer identification in complex networks[M]∥Complex Spreading Phenomena in Social Systems. Springer, Cham, 2018: 125148.
[7] Pei S, Muchnik L, Andrade Jr J S, et al. Searching for superspreaders of information in real-world social media[J]. Scientific reports, 2014, 4: 5547.
[8] Liu Y, Tang M, Zhou T, et al. Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition[J]. Scientific reports, 2015, 5: 9602.
[9] Liu Y, Tang M, Zhou T, et al. Improving the accuracy of the k-shell method by removing redundant links: From a perspective of spreading dynamics[J]. Scientific reports, 2015, 5: 13172.
[10] Lü L, Zhou T, Zhang Q M, et al. The H-index of a network node and its relation to degree and coreness[J]. Nature communications, 2016, 7: 10168.
[11] Martin T, Zhang X, Newman M E J. Localization and centrality in networks[J]. Physical review E, 2014, 90(5): 052808.
[12] Radicchi F, Castellano C. Leveraging percolation theory to single out influential spreaders in networks[J]. Physical Review E, 2016, 93(6): 062314.
[13] Zhou T, Liu J G, Wang B H. Notes on the algorithm for calculating betweenness[J]. Chinese Physics Letters, 2006, 23(8): 23272329.
[14] Fouss F, Pirotte A, Renders J M, et al. Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation[J]. IEEE Transactions on knowledge and data engineering, 2007, 19(3): 355369.
[15] Latora V, Marchiori M. Efficient behavior of small-world networks[J]. Physical review letters, 2001, 87(19): 198701.
[16] Ji S, Lu L, Yeung C H, et al. Effective spreading from multiple leaders identified by percolation in social networks[J]. arXiv preprint arXiv:1508.04294, 2015.
[17] Krzakala F, Moore C, Mossel E, et al. Spectral redemption in clustering sparse networks[J]. Proceedings of the National Academy of Sciences, 2013, 110(52): 2093520940.
[18] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440442.
[19] Yang T, Jin R, Chi Y, et al. Combining link and content for community detection: a discriminative approach[C]∥Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2009: 927936.
[20] De Nooy W. A literary playground: Literary criticism and balance theory[J]. Poetics, 1999, 26(56): 385404.
[21] De Nooy W, Mrvar A, Batagelj V. Exploratory Social network analysis with Pajek[M]. Cambridge University Press, 2018.
[22] Michael J H, Massey J G. Modeling the communication network in a sawmill[J]. Forest Products Journal, 1997, 47(9): 25.
[23] 宋甲秀, 杨晓翠, 张曦煌. 复杂网络中 Top-k 影响力节点的识别算法[J]. 计算机科学与探索, 2018, 12(6): 928939.Song Jiaxiu, Yang Xiaocui, Zhang Xihuang. Top-k influential nodes identification algorithm in complex Networks[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(6):928939.
[24] Leskovec J, Adamic L A, Huberman B A. The dynamics of viral marketing[J]. ACM Transactions on the Web (TWEB), 2007, 1(1): 5.
[1] 张姣, 刘三阳, 白艺光. 基于社团结构的组合信息重连策略[J]. 复杂系统与复杂性科学, 2019, 16(2): 1-8.
[2] 吕亚楠, 韩华, 贾承丰, 瞿倩倩. 基于有偏向的重启随机游走链路预测算法[J]. 复杂系统与复杂性科学, 2018, 15(4): 17-24.
[3] 景兴利, 赵彩红, 凌翔. 加权网络上随机行走的平均首到达时间与平均吸收时间[J]. 复杂系统与复杂性科学, 2018, 15(4): 25-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed