Abstract:This paper considers the inconsistency between the upgoing and downgoing bus lines. Taking the bus network in Guilin as an example, use the network analysis results to provide a theoretical basis for the optimization of the bus lines. Firstly, the characteristics of the degree distribution, average path length, etc. of the bus transfer network in the urban area of Guilin are studied. The results show that the cumulative probability of the network degree value is in the form of a logarithmic function. The Guilin station has the highest degree, betweenness and compactness, which indicate that the Guilin station is the core station. Secondly, both random and deliberate attack methods are used to destroy the network. The changes of average shortest path and connectivity under random attack are slighter than the deliberate attack, which means that the network is more robust against random attack. Finally, the PageRank algorithm is used to rank the importance of network nodes, and key stations in the bus transfer network are mined.
覃炳发, 李科赞. 桂林市公交换乘网络的实证分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 22-30.
QIN Bingfa, LI Kezan. Empirical Analysis of Guilin's Bus Transfer Network. Complex Systems and Complexity Science, 2020, 17(2): 22-30.
[1]汪小帆, 李翔, 陈关荣. 网络科学导论[M]. 北京: 高等教育出版社, 2012. [2]Erds P, Rényi A. On random graphs I[J]. Publ Math Debrecen, 1959, 6: 290297. [3]Watts D J, Strogatz S H. Collective dynamics of ‘small-world’networks[J]. Nature, 1998, 393(6684): 440442. [4]Sen P, Dasgupta S, Chatterjee A, et al. Small-world properties of the Indian railway network[J]. Physical Review E, 2003, 67(3): 036106. [5]Seaton K A, Hackett L M. Stations, trains and small-world networks[J]. Physica A, 2004, 339(3/4): 635644. [6]Porta S, Crucitti P, Latora V. The network analysis of urban streets: a dual approach[J]. Physica A, 2006, 369(2): 853866. [7]陈强. 基于复杂网络理论的哈尔滨公交网络拓扑特性及优化研究[D]. 哈尔滨: 东北农业大学, 2017. Chen Qiang. Topological characteristics and optimization of Harbin public traffic network based on complex network[D]. Harbin: Northeast Agricultural University, 2017. [8]周涛,柏文洁,汪秉宏,等. 复杂网络研究概述[J]. 物理, 2005, 34(1):3136. Zhou Tao, Bai Wenjie, Wang Binghong, et al. A brief review of complex networks[J]. Physics, 2005, 34(1):3136. [9]刘涛,陈忠,陈晓荣. 复杂网络理论及其应用研究概述[J]. 系统工程, 2005, 23(6):17. Liu Tao, Chen Zhong, Chen Xiaorong. A brief review of complex networks and its application[J]. Systems Engineering, 2005, 23(6):17. [10] 李晓佳,张鹏,狄增如,等. 复杂网络中的社团结构[J]. 复杂系统与复杂性科学, 2008, 5(3):1942. Li Xiaojia, Zhang Peng, Di Zengru, et al. Community structure in complex networks[J]. Complex Systems and Complexity Science, 2008, 5(3):1942. [11] 刘建香. 复杂网络及其在国内研究进展的综述[J]. 系统科学学报, 2009, 17(4):3137. Liu Jianxiang. Complex network and review of domestic research[J]. Journal of Systems Science, 2009, 17(4):3137. [12] 秦李,杨子龙,黄曙光. 复杂网络的节点重要性综合评价[J]. 计算机科学, 2015, 42(2):6064. Qin Li, Yang Zilong, Huang Shuguang. Synthesis evaluation method for node importance in complex networks[J]. Computer Science, 2015, 42(2):6064. [13] 刘通. 基于复杂网络的文本关键词提取算法研究[J]. 计算机应用研究, 2016, 33(2):365369. Liu Tong. Algorithm research of text key word extraction based on complex networks[J]. Application Research of Computers, 2016, 33(2):365369. [14] 乔少杰,韩楠,张凯峰,等. 复杂网络大数据中重叠社区检测算法[J]. 软件学报, 2017, 28(3):631647. Qiao Shaojie, Han Nan, Zhang Kaifeng, et al. Algorithm for detecting overlapping communities from complex network big data[J]. Journal of Software, 2017, 28(3):631647. [15] 陈伟华,王刚,叶仁杰,等. 基于复杂网络理论的系统脆弱度评估新方法[J]. 浙江电力, 2018, 37(3):711. Chen Weihua, Wang Gang, Ye Renjie, et al. A new method for system vulnerability assessment based on complex network theory[J]. Zhejiang Electric Power, 2018, 37(3):711. [16] 陈东明,王云开,黄新宇,等. 基于社团密合度的复杂网络社团发现算法[J]. 东北大学学报(自然科学版), 2019, 40(2):186191. Chen Dongming, Wang Yunkai, Huang Xinyu, et al. Community detection algorithm for complex networks based on group density[J]. Journal of Northeastern University( Natural Science), 2019, 40(2):186191. [17] 赵金山,狄增如,王大辉. 北京市公共汽车交通网络几何性质的实证研究[J]. 复杂系统与复杂性科学, 2005, 2(2):4548. Zhao Jinshan, Di Zengru, Wang Dahui. Empirical research on Public transport network of Beijing[J]. Complex Systems and Complexity Science, 2005, 2(2):4548. [18] 王喆,彭其渊. 成都市公交复杂网络拓扑特性研究[J]. 交通与计算机, 2007, 25(2):3942. Wang Zhe, Peng Qiyuan. Research on topologic properties of Chengdu public traffic complex network[J]. Computer and Communications, 2007, 25(2):3942. [19] 李英,周伟,郭世进. 上海公共交通网络复杂性分析[J]. 系统工程, 2007, 25(1):3841. Li Ying, Zhou Wei, Guo Shijin. An analysis of complexity of public transportation network in Shanghai[J]. Systems Engineering, 2007, 25(1):3841. [20] 马景富,王红蕾. 贵阳公共交通网络复杂性分析[J]. 微计算机信息, 2009, 25(21):8990,194. Ma Jingfu, Wang Honglei. An analysis of complexity of public transportation network in Guiyang[J]. Microcomputer Information, 2009, 25(21):8990,194. [21] 李东辕. 城市公交复杂网络静态特征分析及网络优化研究[D]. 济南: 山东大学, 2018. Li Dongyuan. The analysis and optimization of urban transit network based on complex networks[D]. Jinan: Shandong University, 2018. [22] 邓加兴. 基于拓扑网络复杂度分析的城市公交网络优化研究[D]. 桂林: 桂林电子科技大学, 2015. Deng Jiaxing. Research on urban public transport network optimization based on topological network complexity analysis[D]. Guilin: Guilin University of Electronic Technology, 2015. [23] 张稀琦. 基于演化分析的城市公交网络优化调整方法研究[D]. 桂林: 桂林电子科技大学, 2015. Zhang Xiqi. Research on optimization and adjustment method of urban public transit network based on evolvement analysis[D]. Guilin: Guilin University of Electronic Technology, 2015. [24] 孔繁钰,周愉峰,李献忠. 基于Space-P复杂网络模型的城市公交网络特性分析[J]. 计算机科学, 2018, 45(8):125130. Kong Fanyu, Zhou Yufeng, Li Xianzhong. Characteristic analysis of urban public transport networks based on Space-P complex network model[J]. Computer Science, 2018, 45(8):125130. [25] 任晓龙,吕琳媛. 网络重要节点排序方法综述[J]. 科学通报, 2014, 59(13):11751197. Ren Xiaolong, Lü Linyuan. Review of ranking nodes in complex networks[J]. Chinese Science Bulletin, 2014, 59(13):11751197.