Please wait a minute...
文章检索
复杂系统与复杂性科学  2020, Vol. 17 Issue (4): 66-72    DOI: 10.13306/j.1672-3813.2020.04.008
  本期目录 | 过刊浏览 | 高级检索 |
基于领航跟随的多机器人系统有限时间一致性控制研究
孙玉娇, 杨洪勇, 于美妍
鲁东大学信息与电气工程学院,山东 烟台 264025
The Finite Time Consistency Control of Multi-Robot Systems Based on Leader-Following Systems Based on Leader-Following
SUN Yujiao, YANG Hongyong, YU Meiyan
School of information and electrical engineering, Ludong University, Yantai 264025,China
全文: PDF(1522 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在人工智能应用中,多机器人可以解决实际工程中的复杂问题,成为机器人领域中研究热点。针对非完整移动机器人在饱和控制输入情况下的编队控制问题,构建了一种输入受约束的有限时间一致性算法。运用代数图论、现代控制理论和矩阵论等分析工具,通过引入虚拟领航者把多机器人系统的编队问题转化为路径跟踪问题,证明了在输入饱和受限条件下多机器人系统可以实现有限时间收敛,并且得到了系统有限时间内收敛的充分条件。最后通过计算机仿真验证了所提算法的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙玉娇
杨洪勇
于美妍
关键词 有限时间领航跟随编队控制非线性系统    
Abstract:In the application of artificial intelligence, the cooperation of multi robots can solve complex problems in practical engineering and become the research hotspot. In this paper, an input-constrained finite-time consistency algorithm is proposed to solve the formation control problem of nonholonomic mobile robots. By using the analysis tools such as algebraic graph theory, modern control theory and matrix theory, the formation problem of multi-robot system is transformed into the path tracking problem by introducing the virtual navigator. It is proved that the multi-robot system can realize the finite time convergence under the condition of input saturation. And the sufficient condition is obtained in finite time. Finally, the effectiveness of the proposed algorithm is verified by computer simulation.
Key wordsfinite time    leader-following    formation control    nonlinear system
收稿日期: 2020-04-27      出版日期: 2020-12-21
ZTFLH:  TP13  
基金资助:国家自然科学基金(61673200)
通讯作者: 杨洪勇(1967-),男,山东德州人,博士,教授,主要研究方向为多自主体编队控制、复杂网络等。   
作者简介: 孙玉娇(1997-),女,山东青岛人,硕士研究生,主要研究方向为多智能体控制。
引用本文:   
孙玉娇, 杨洪勇, 于美妍. 基于领航跟随的多机器人系统有限时间一致性控制研究[J]. 复杂系统与复杂性科学, 2020, 17(4): 66-72.
SUN Yujiao, YANG Hongyong, YU Meiyan. The Finite Time Consistency Control of Multi-Robot Systems Based on Leader-Following Systems Based on Leader-Following. Complex Systems and Complexity Science, 2020, 17(4): 66-72.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2020.04.008      或      http://fzkx.qdu.edu.cn/CN/Y2020/V17/I4/66
[1] 刘磊. 多移动机器人编队及协调控制研究[D].湖北:华中科技大学,2009.
Liu Lei. Research on formation and coordinated control of multi mobile robots[D].Hubei: Huazhong University of Science and Technology,2009.
[2] 杨洪勇,郭雷,张玉玲,等. 复杂分数阶多自主体系统的运动一致性[J].自动化学报,2014,40(3):489-496.
Yang Hongyong, Guo Lei, Zhang Yuling, et al. Kinematic consistency of complex fractional multi-agent systems[J]. Journal of Automation,2014,40(3):489-496.
[3] 詹习生,吴杰,关治洪,等. 基于丢包和带宽限制网络化系统稳定性分析[J].控制理论与应用, 2014,31(8):1111-1115.
Zhan Xisheng, Wu Jie, Guan Zhihong, et al. Stability analysis of networked system based on packetdropouts and bandwidth constraints[J]. Control Theory & Applications,2014,3(8):1111-1115.
[4] 冯磊. 复杂环境下多机器人的协同编队与避障控制研究[D].湖南:湖南工业大学,2017.
Feng Lei. Research on cooperative formation and obstacle avoidance control of multi robots in complex environment[D].Hunan: Hunan University of Technology,2017.
[5] 易国,毛建旭,王耀南,等. 非完整移动机器人领航-跟随编队分布式控制[J].仪器仪表学报,2017,38(9):2266-2272.
Yi Guo, Mao Jianxu, Wang Yaonan, et al. Distributed control of navigation following formation for nonholonomic mobile robots[J]. Journal of Instrumentation,2017,38(9):2266-2272.
[6] 张显. 基于领航—跟随法的多移动机器人编队控制研究[D].辽宁:大连海事大学,2017.
Zhang Xian. Research on formation control of multiple mobile robots based onleader-following method[D].Liaoning: Dalian Maritime University,2017.
[7] 宋天华. 多智能体系统编队与避障算法研究[D].黑龙江:哈尔滨工业大学,2016.
SongTianhua. Research on formation and obstacle avoidance algorithm of multi-agent systems[D].Heilongjiang: Harbin Institute of Technology,2016.
[8] 胡玉莹. 基于领航—跟随法的有限时间旋转一致性及编队控制研究[D].辽宁:大连海事大学,2018.
HuYuying. Research on finite time rotation consistency and formation control based on leader-following method[D]. Liaoning: Dalian Maritime University,2018.
[9] 刘海涛,张铁. 基于Backstepping的机器人有限时间跟踪控制研究[J].机床与液压,2013,41(15):30-33.
LiuHaitao, Zhang Tie. Research on robot finite time tracking control based on backstepping[J]. Machine Tool and Hydraulic,2013,41(15):30-33.
[10] 王芳,陈鑫,何勇,等. 联合连通条件下的二阶多智能体系统有限时间一致性控制[J].控制理论与应用,2014,31(7):981-986.
Wang Fang, Chen Xin, He Yong, et al. Finite time consistency control of second-order multi-agent systems with joint connectivity[J]. Control Theory and Application,2014,31(7):981-986.
[11] 肖秋云. 多智能体系统有限时间一致性若干问题研究[D].江苏:江南大学,2015.
Xiao Qiuyun. Research on finite time consistency of multi-agent system[D]. Jiangsu: Jiangnan University,2015.
[12] 吴小重,张合新,宋海涛,等. 非完整移动多机器人系统有限时间一致性控制[J]. 电光与控制,2019,26(5):1-8.
WuXiaochong, Zhang Hexin, Song Haitao, et al. Finite time consistency control of nonholonomic mobile multi robot systems[J]. Electro Optic and Control,2019,26(5):1-8.
[13] 潘勇. 多智能体系统一致性与多机器人编队控制研究[D].浙江:杭州电子科技大学,2016.
Pan Yong. Research on the unity of multi intelligent systems and formation control of multi robots[D].Zhejiang: Hangzhou University of Electronic Science and Technology,2016.
[14] 蒋国平,周映江. 基于收敛速率的多智能体系统一致性研究综述[J].南京邮电大学学报(自然科学版),2017,37(3):15-25.
Jiang Guoping, Zhou Yingjiang. A survey of the research on the unified coherence of multi-agent systems based on convergence rate[J].Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition),2017,37(3):15-25.
[15] 王庆领. 饱和受限的多智能体系统一致性问题研究[D].黑龙江:哈尔滨工业大学,2014.
Wang Qingling. Research on the unified problem of multi-agent systems with limited saturation[D].Heilongjiang: Harbin Institute of Technology,2014.
[1] 王潇, 纪志坚. 基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 60-68.
[2] 朱萌萌, 宋运忠. 基于勒贝格采样的非线性系统优化控制[J]. 复杂系统与复杂性科学, 2019, 16(1): 83-93.
[3] 杨怡泽, 杨洪勇, 刘凡. 离散时间多智能体系统群集运动的快速收敛[J]. 复杂系统与复杂性科学, 2018, 15(1): 56-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed