Please wait a minute...
文章检索
复杂系统与复杂性科学  2021, Vol. 18 Issue (4): 21-29    DOI: 10.13306/j.1672-3813.2021.04.003
  本期目录 | 过刊浏览 | 高级检索 |
确定性社会影响力竞争扩散问题研究
翁克瑞, 沈卉, 侯俊东
中国地质大学(武汉)经济管理学院,武汉 430078
On the Deterministic Competitive Diffusion of Social Influence
WENG Kerui, SHEN Hui, HOU Jundong
School of Economics and Management, China University of Geosciences (Wuhan), Wuhan 430074, China
全文: PDF(1401 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对存在于社交网络中多种产品的对抗营销及多种信息竞争传播等场景,考虑竞争与确定性因素,研究确定性社会影响力竞争扩散问题,构建了该问题的整数规划模型,并设计了大规模求解算法。实验结果表明基于扩散信息的边际影响力纠正算法展现了良好的可扩展性与稳定性,求解质量领先度数下降等算法20%以上,求解时间只占贪婪算法、商业软件时间成本极小比例。为企业在竞争扩散中的实际应用提供了可行的优化方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翁克瑞
沈卉
侯俊东
关键词 竞争扩散社交网络影响力最大化阈值模型复杂网络    
Abstract:In view of the competitive marketing of various products and the competitive dissemination of various information in social networks, the deterministic social influence maximization problem was studied considering the competitive and deterministic factors, and the integer programming model of the problem was constructed, and the large-scale approaching algorithm was designed. The experimental results showed that the marginal influence correction algorithm based on diffusion information showed good scalability and stability, and the reduction of the leading degree of solving quality was more than 20%. The solving time only accounted for a small proportion of the time cost of greedy algorithm and commercial software. It provides a feasible optimization scheme for the practical application of enterprises in the diffusion of competition.
Key wordscompetitive diffusion    social networks    influence maximization    threshold model    complex networks
收稿日期: 2020-10-16      出版日期: 2021-11-30
ZTFLH:  N94  
  O22  
基金资助:国家自然科学基金资助项目(71874163)
通讯作者: 沈卉(1996-),女,河南信阳人,硕士研究生,主要研究方向为社会网络分析。   
作者简介: 翁克瑞(1979-),男,浙江温州人,博士,副教授,主要研究方向为物流网络设计。
引用本文:   
翁克瑞, 沈卉, 侯俊东. 确定性社会影响力竞争扩散问题研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 21-29.
WENG Kerui, SHEN Hui, HOU Jundong. On the Deterministic Competitive Diffusion of Social Influence. Complex Systems and Complexity Science, 2021, 18(4): 21-29.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2021.04.003      或      http://fzkx.qdu.edu.cn/CN/Y2021/V18/I4/21
[1]Domingos P, Richardson M. Mining the network value of customers[C].Proceeding of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA,2001: 57-66.
[2]Richardson M, Domingos P. Mining knowledge-sharing sites for viral marketing[C].Proceeding of the eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA,2002: 61-70.
[3]Kempe D,Kleinberg J, Tardos E. Maximizing the spread of influence through a social network[C].Proceeding of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2003: 137-146.
[4]Leskovec J, Krause A, Guestrin C, et al. Cost-effective outbreak detection in networks[C].Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2007: 420-429.
[5]Goyal A, Lu W, Lakshmanan L V. Celf++: optimizing the greedy algorithm for influence maximization in social networks[C].Proceedings of the 20th International Conference Companion on World Wide Web. New York, USA,2011: 47-48.
[6]Kimura M, Saito K. Tractable Models for Information Diffusion in Social Networks[M]. Germany: Springer, 2006: 59-271.
[7]Chen W, Yuan Y, Zhang L. Scalable influence maximization in social networks under the linear threshold model[C].2010 IEEE 10th International Conference on Data Mining.Sydney,Australia, 2010: 88-97.
[8]Wang C, Chen W, Wang Y. Scalable influence maximization for independent cascade model in large-scale social networks[J]. Data Mining and Knowledge Discovery, 2012, 25(3): 545-576.
[9]Goyal A, Lu W, Lakshmanan L V. Simpath: an efficient algorithm for influence maximization under the linear threshold model[C].2011 IEEE 11th International Conference on Data Mining.Vancouver, BC, Canada, 2011: 211-220.
[10] Chen W, Wang Y, Yang S. Efficient influence maximization in social networks[C].Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA,2009: 199-208.
[11] Daliri Khomami M M, Rezvanian A, Bagherpour N, et al. Minimum positive influence dominating set and its application in influence maximization: a learning automata approach[J]. Applied Intelligence, 2018, 48(3): 570-593.
[12] Bozorgi A, Haghighi H, Zahedi M S, et al. INCIM: a community-based algorithm for influence maximization problem under the linear threshold model[J]. Information Processing and Management, 2016, 52(6): 1188-1199.
[13] Shang J, Zhou S, Li X, et al. CoFIM: a community-based framework for influence maximization on large-scale networks[J].Knowledge-Based Systems, 2016, 117(FEB): 88-100.
[14] Cui L, Hu H, Yu S, et al. DDSE: a novel evolutionary algorithm based on degree-descending search strategy for influence maximization in social networks[J]. Journal of Network and Computer Applications, 2018, 103(FEB): 119-130.
[15] Gong M, Yan J, Shen B, et al. Influence maximization in social networks based on discrete particle swarm optimization[J]. Information Sciences, 2016, 367-368: 600-614.
[16] Borgs C, Brautbar M, Chayes J, et al. Maximizing social influence in nearly optimal time[C]. Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, USA,2014: 946-957.
[17] Lu W, Chen W, Lakshmanan L V S. From competition to complementarity: comparative influence diffusion and maximization[C].Proceedings of the VLDB Endowment Kohala Coast,Hawaii,2015: 60-71.
[18] Ou H, Chou C, Chen M. Influence maximization for complementary goods: why parties fail to cooperate?[C].Proceeding of the 25th ACM International Conference on Information and Knowledge Management.New York, USA,2016: 1713-1722.
[19] Borodin A. Threshold models for competitive influence in social networks[C].Internet and Network Economics. Berlin, Heidelberg, 2010: 539-550.
[20] Lu W, Bonchi F, Goyal A, et al. The bang for the buck: fair competitive viral marketing from the host perspective[C].Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA, 2013: 928-936.
[21] Bozorgi A, Samet S, Kwisthout J, et al. Community-based influence maximization in social networks under a competitive linear threshold model[J]. Knowledge-Based Systems, 2017, 134: 149-158.
[22] Swaminathan A. An algorithm for influence maximization and target set selection for the deterministic linear threshold model[J]. Current Opinion in Immunology, 2014,12(1):59.
[23] Albert R, Barab A. Statistical mechanics of complex networks[J]. Reviews of Modern Physics, 2002, 74(1): 47.
[1] 张芹, 郭进利. 基于复杂网络理论的质量管理分析[J]. 复杂系统与复杂性科学, 2021, 18(4): 43-49.
[2] 蒋培祥, 董志良, 张翠芝, 张亦池. 常规能源国际贸易网络演化特征研究[J]. 复杂系统与复杂性科学, 2021, 18(4): 66-73.
[3] 公翠娟, 宾晟, 孙更新. 基于多种社交关系的概率矩阵分解推荐算法[J]. 复杂系统与复杂性科学, 2021, 18(1): 1-7.
[4] 吴慧, 顾晓敏, 赵袁军. 产学研合作创新网络拓扑演化的复杂网络研究[J]. 复杂系统与复杂性科学, 2020, 17(4): 38-47.
[5] 王哲, 李建华, 康东, 冉淏丹. 复杂网络鲁棒性增强策略研究综述[J]. 复杂系统与复杂性科学, 2020, 17(3): 1-26.
[6] 何铭, 邹艳丽, 梁明月, 李志慧, 高正. 基于多属性决策的电力网络关键节点识别[J]. 复杂系统与复杂性科学, 2020, 17(3): 27-37.
[7] 王梓行, 姜大立, 漆磊, 陈星, 赵禹博. 基于冗余度的复杂网络抗毁性及节点重要度评估模型[J]. 复杂系统与复杂性科学, 2020, 17(3): 78-85.
[8] 徐开俊, 吴佳益, 杨泳, 梁磊. 中国航线网络结构的多层性分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 39-46.
[9] 周双, 宾晟, 孙更新. 融合多关系的矩阵分解社会化推荐算法[J]. 复杂系统与复杂性科学, 2020, 17(1): 30-36.
[10] 李小林, 许润杰, 娄洁, 许新建. 双层网络上的社会传播[J]. 复杂系统与复杂性科学, 2019, 16(4): 13-18.
[11] 付莲莲, 冯家璇, 赵一恒. 生猪价格波动的复杂网络特征及模态传导[J]. 复杂系统与复杂性科学, 2019, 16(4): 82-89.
[12] 章平, 黄傲霜, 罗宏维. 不同类型复杂网络中个体合作行为互动的演化博弈模拟[J]. 复杂系统与复杂性科学, 2019, 16(3): 60-70.
[13] 肖琴, 罗帆. 基于复杂网络的两栖水上飞机起降安全风险演化[J]. 复杂系统与复杂性科学, 2019, 16(2): 19-30.
[14] 钟丽君, 宾晟, 袁敏, 孙更新. 多功能复杂网络模型及其应用[J]. 复杂系统与复杂性科学, 2019, 16(2): 31-40.
[15] 董晓娟, 安海岗, 董志良. 有色金属国际期货市场价格联动效应演化分析——以铜、铝、锌为例[J]. 复杂系统与复杂性科学, 2018, 15(4): 50-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed