Technological Convergence of Artificial Intelligence Based on Multi-level Networks
LIU Xiaoyan1, SUN Li'na1, QIU Jingwen2, SHAN Xiaohong1
1. College of Economics and Management, Beijing University of Technology, Beijing 100124, China; 2. College of Information Management, Nanjing University, Nanjing 210023, China
Abstract:In order to better formulate policies for the development of artificial intelligence, this paper analyzes the technology convergence mechanism in the field of artificial intelligence by constructing the technology convergence network model. Based on the patent data from 2010—2019 of artificial intelligence field, combined with technology and organization dimension, this paper tries to analyzes from three aspects of technical characteristics, organization technical characteristics and organization relationship characteristics. The results show that: In the field of artificial intelligence, organization cooperation is sparse, fusion technology is relatively scattered, organization and technology have obvious core-edge structure characteristics. On the level of technical characteristics, similar technologies are easier to be converged, and technologies that have already been converged will promote new convergence; On the level of organizational technical characteristics, the common technologies owned by the orgnization will negatively affect the occurrence of convergence with other technologies; On the level of organizational relationship characteristics, the effect of cooperation between organizations on technological convergence is closely related to the development stage of the field, and the "circle of buddies" inhibits technology convergence.
刘晓燕, 孙丽娜, 裘靖文, 单晓红. 基于多层网络的人工智能领域跨界技术融合[J]. 复杂系统与复杂性科学, 2022, 19(1): 45-51.
LIU Xiaoyan, SUN Li'na, QIU Jingwen, SHAN Xiaohong. Technological Convergence of Artificial Intelligence Based on Multi-level Networks. Complex Systems and Complexity Science, 2022, 19(1): 45-51.
[1] 王友发, 张茗源, 罗建强, 等. 专利视角下人工智能领域技术机会分析[J]. 科技进步与对策, 2020,37(4):19-26. WANG Y F, ZHANG M Y, LUO J Q, et al. Research on the technological opportunity of artificial intelligence technology based on patent information[J]. Science & Technology Progress and Policy, 2020,37(4):19-26. [2] ROSENBERG N. Technological change in the machine tool industry[J]. Journal of Economic History, 1963,23(4):414-443. [3] KIM E, CHO Y, KIM W. Dynamic patterns of technological convergence in printed electronics technologies: patent citation network[J]. Scientometrics, 2014,98(2):975-998. [4] 毛荐其, 李新秀, 刘娜. 技术会聚对创新绩效的作用机制研究[J]. 科技进步与对策, 2018,35(20):9-14. MAO J Q, Li X X, LIU N. The mechanism of technological convergence on innovation performance[J]. Science & Technology Progress and Policy, 2018,35(20):9-14. [5] JIANG F, JIANG Y, ZHI H, et al. Artificial intelligence in healthcare: past, present and future[J]. Stroke and Vascular Neurology, 2017,2(4):230-243. [6] 陈燕红. 人工智能技术发展背景下智能金融的法律风险及应对[J]. 人民论坛·学术前沿, 2020(15):124-127. CHEN Y H. Legal risks of intelligent finance in the AI technology context and responses[J]. People's Forum · Academic Frontiers, 2020(15):124-127. [7] 苗红, 赵润博, 黄鲁成, 等. 基于LMDI分解模型的技术融合驱动因素研究[J]. 科技进步与对策, 2019,36(3):11-18. MIAO H, ZHAO R B, HUANG L C, et al. Research on driving factors of technology convergence based on LMDI decomposition model[J]. Science & Technology Progress and Policy, 2019,36(3):11-18. [8] 冯科, 曾德明. 技术融合距离的聚类特征与影响因素:基于大规模专利数据的实证研究[J]. 管理评论, 2019,31(8):97-109. FENG K, ZENG D M. Clustering characteristics and influencing factors of technology convergence distance: an empirical study based on large-scale patent data[J]. Business Review, 2019,31(8):97-109. [9] CAVIGGIOLI F. Technology fusion: Identification and analysis of the drivers of technology convergence using patent data[J]. Technovation, 2016,55-56:22-32. [10] CHOI J, JEONG S, KIM K. A study on diffusion pattern of technology convergence: patent analysis for Korea[J]. Sustainability, 2015,7(9):11546-11569. [11] LIM S, KWON O, LEE D H. Technology convergence in the Internet of Things (IoT) startup ecosystem: a network analysis[J]. Telematics and Informatics, 2018,35(7):1887-1899. [12] KIM K. Impact of firms' cooperative innovation strategy on technological convergence performance: the case of korea's ICT Industry[J]. Sustainability, 2017,9(9):1601. [13] 周建平, 刘程军, 徐维祥, 等. 电子商务背景下快递企业物流网络结构及自组织效应——以中通快递为例[J]. 经济地理, 2021,41(2):103-112. ZHOU J P, LIU C J, XU W X, et al. Logistics network structure and self-organizing effect of express delivery enterprises under the background of e-commerce: a case study of ZTO Express[J]. Economic Geography, 2021,41(2):103-112. [14] 吕一博, 韦明, 林歌歌. 基于专利计量的技术融合研究:判定、现状与趋势:以物联网与人工智能领域为例[J]. 科学学与科学技术管理, 2019,40(4):16-31. LÜ Y B, WIE M, LIN G G. Research on technology fusion based on patentometrics: judge, status and trends-take the field of internet of things and artificial intelligence as an example[J]. Science of Science and Management of S.& T., 2019,40(4):16-31. [15] 高霞, 陈凯华. 合作创新网络结构演化特征的复杂网络分析[J]. 科研管理, 2015,36(6):28-36. GAO X, CHEN K H. Complex network analysis of the structural evolution characteristics of cooperative innovation networks[J]. Science Research Management, 2015,36(6):28-36. [16] 宋昱晓, 苗红. 基于专利的技术融合趋势的驱动因素研究[J]. 情报杂志, 2017,36(12):98-105. SONG Y X, MIAO H. Research on the driving factors of technology convergence trend based on patent[J]. Journal of Information, 2017,36(12):98-105. [17] 翟东升, 张京先. 基于专利技术共现网络的无人驾驶汽车技术融合演化研究[J]. 情报杂志, 2020,39(4):60-66. ZHAI D S, ZHANG J X. Research on technology convergence evolution of autonomous vehicle based on patent technology co-occurrence network[J]. Journal of Information, 2020,39(4):60-66. [18] WANG P, RBOINS G, PATTISON P, et al. Exponential random graph models for multilevel networks[J]. Social Networks, 2013,35(1):96-115. [19] 熊勇清, 白云, 陈晓红. 战略性新兴产业共性技术开发的合作企业评价:双维两阶段筛选模型的构建与应用[J]. 科研管理, 2014,35(8):68-74. XIONG Y Q, BAI Y, CHEN X H. Evaluation of cooperative enterprises for generic technology development of strategic emerging industries: construction and application of dual-dimensional and two-stage screening model[J]. Science Research Management, 2014,35(8):68-74.