Abstract:Based on the complex network theory, this paper proposes a critical lines evaluation method for power network according to the cohesion degree of network. This method focuses on the overall state of the power network, the connectivity between nodes in the power network and the numbers of nodes in the network. It can measure the importance of each transmission line in power network by observing the change of cohesion degree of power network before and after transmission line breaking. Because of the comparison between the calculation results of this paper and the results of the existing critical lines evaluation schemes based on the network performance in the literature, the simulation on the topological structure and dynamics, the reasonable and effective of the method is proved.
傅杰, 邹艳丽, 谢蓉. 基于复杂网络理论的电力网络关键线路识别[J]. 复杂系统与复杂性科学, 2017, 14(3): 91-96.
FU Jie, ZOU Yanli, XIE Rong. The Critical Lines Identification of the Power Grids Based on the Complex Network Theory. Complex Systems and Complexity Science, 2017, 14(3): 91-96.
[1]Pagani G A, Marco A. From the grid to the smart grid, topologically[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 449: 160175. [2]Bhangu N S, Singh R, Pahuja G L. Reliability centred maintenance in a thermal power plant: a case study[J]. International Journal of Productivity and Quality Management, 2011, 7(2): 209228. [3]Park J W, Seol W C. Considerations for severe accident management under extended station blackout conditions in nuclear power plants[J]. Progress in Nuclear Energy, 2016, 88: 245256. [4]Aguiar A S, Lamego Simoes Filho F F, Alvim A C M, et al. Station Blackout in unit 1 and analysis of the wind field in the region of Angra dos Reis[J]. Annals of Nuclear Energy, 2015, 78: 93103. [5]Watanabe T, Ishigaki M, Hirano M. Analysis of BWR long-term station blackout accident using TRAC-BF1[J]. Annals of Nuclear Energy 2012, 49: 223226. [6]陈增强, 谢征, 张青. 基于非负矩阵分解的复杂网络重构[J]. 复杂系统与复杂性科学, 2016, 13(3): 2632. Chen Zengqiang, Xie Zheng, Zhang Qing. Complex network reconstruction based on non negative matrix factorization[J]. Complex Systems and Complexity Science, 2016, 13(3): 2632. [7]张欣. 多层复杂网络理论研究进展:概念、理论和数据[J]. 复杂系统与复杂性科学, 2015, 12(2): 103107. Zhang Xin. Research progress of multi layer complex network theory: concept, theory and data[J]. Complex Systems and Complexity Science, 2015, 12(2): 103107. [8]巩长忠, 李飞燕. 不确定复杂网络的广义矩阵投影同步[J]. 复杂系统与复杂性科学, 2015, 12(3): 5360. Gong Changzhong, Li Feiyan. Generalized matrix projective synchronization of uncertain complex networks[J]. Complex Systems and Comple-xity Science, 2015, 12(3): 5360. [9]王海峰, 李旺, 顾国彪,等. 风力发电机自循环蒸发内冷系统稳定性的研究[J]. 物理学报, 2016, 65(3): 3845. Wang Haifeng, Li Wang, Gu Guobiao, et al. Study on the stability of self circulation evaporative cooling system of wind turbine[J]. Physical Science Journal, 2016, 65(3): 3845. [10] 杜江, 郭瑞鹏, 李传栋,等. 电力系统可靠性评估中的重要控制法[J]. 电力系统自动化, 2015, 39(5): 6974. Du Jiang, Guo Ruipeng, Li Chuandong, et al. Important control method in reliability evaluation of power system[J]. Automation of Electric Power System, 2015, 39(5): 6974. [11] 丁明, 韩平平. 加权拓扑模型下的小世界电网脆弱性评估[J]. 中国电机工程学报, 2008, 28(10): 2025. Ding Ming, Hang Pingping. Vulnerability assessment of small world power grid with weighted topological model[J]. Chinese Journal of Electrical Engineering, 2008, 28(10): 2025. [12] 王涛, 高成彬, 顾雪平,等. 基于功率介数的电网关键环节辨识[J]. 电网技术, 2014, 38(7): 19071913. Wang Tao, Gao Chengbin, Gu Xueping, et al. Identification of key link in power system based on power dielectric[J]. Power System Technology, 2014, 38(7): 19071913. [13] 魏震波, 刘俊勇, 朱国俊,等. 基于电网状态与结构的综合脆弱性评估模型[J]. 电力系统自动化, 2009, 33(8), 1114. Wei Zhenbo, Liu Junyong, Zhu Guojun, et al. Integrated vulnerability assessment model based on state and structure of power network[J]. Automation of Electric Power System, 2009, 33(8), 1114. [14] Karimi E, Ebrahimi A. Considering risk of cascading line outages in transmission expansion planning by benefit/cost analysis[J]. International Journal of Electrical Power and Energy Systems, 2016, 78: 480488. [15] Ou Y M, Zhao L J, Pan Z Z, et al. Comparisons of complex network based models and direct current power flow model to analyze power grid vulnerability under intentional attacks[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 430: 4553. [16] Ou Y M, Pan Z Z, Hong L, et al. Correlation analysis of different vulnerability metrics on power grids[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 396: 204211. [17] 张富超, 谢成荣, 沈立新,等. 基于源流路径链和输电介数的电网关键线路辨识[J]. 电力系统保护与控制, 2015, 43(21): 712. Zhang Fuchao, Xie Chengrong, Shen Lixin, et al. Identification of key lines in power system based on source and path chain and transmission medium number[J]. Power System Protection and Control, 2015, 43(21): 712. [18] 鞠文云, 李银红. 基于最大流传输贡献度的电力网络关键线路和节点辨识[J]. 电力系统自动化, 2012, 36(9): 612. Ju Wenyun, Li Yinhong. The key lines and nodes identification of power network based on the maximum transmission contribution degree[J]. Automation of Electric Power System, 2012, 36(9): 612. [19] Crucitti P, Latora V, Marchiori M. Locating critical lines in high-voltage electrical power grids[J]. Fluctuation and Noise Letters, 2005, 5(2): 201208. [20] Rohden M, Sorge A, Timme M, et al. Self-organized synchronization in decentralized power grids[J]. Physical Review Letters, 2012, 109(6): 064101.