Abstract:The rising of online networks have provided a new ecosystem of individual interactions. Of particular interest are social contagions on duplex networks. Previous studies assume that each network is homogeneous, however, empirical analysis shows that nearly the online networks are heterogeneous. Motivated by this, we studied the threshold model on duplex networks with different online-offline coupling. Compared with uncorrelated coupling, the maximum positive coupling weakens systematic robustness for the sparse network, while enhances the robustness for the dense network. The maximum negative coupling, however, plays an opposite role. These effects are strengthened when the online network is heterogeneous.
[1]Jia P, Tabatabaei A M, Friedkin N E, et al. Opinion dynamics and the evolution of social power in influence networks[J]. SIAM Review, 2015, 57: 367-397. [2]Porter M A, Gleeson J P. Dynamical Systems on Networks: a Tutorial [M]. Springer, 2016. [3]李翔, 刘宗华, 汪秉宏. 网络传播动力学[J]. 复杂系统与复杂性科学, 2010, 7(2/3): 33-37. Li Xiang, Liu Zonghua, Wang Binghong. On spredding dynamics on networks[J]. Complex Systems and Complexity Science, 2010, 7(2/3): 33-37. [4]Schelling T C. Hockey helmets, concealed weapons, and daylight saving[J]. Journal of Conflict Resolution, 1973, 17: 381-428. [5]Granovetter M. Threshold models of collective behavior[J]. American Journal of Sociology, 1978, 83: 1420-1443. [6]Morris S. Contagion[J]. The Review of Economic Studies, 2000, 67: 57-78. [7]Watts D J. A simple model of global cascades on complex networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 5766-5771. [8]Gleeson J P. Cascades on correlated and modular random networks[J]. Physical Review E, 2008, 77: 046117. [9]Coupechoux E, Lelarge M. How clustering affects epidemics in random networks[J]. Advances in Applied Probability, 2014, 46: 985-1008. [10] Backlund V P, Saramäki J, Pan R K. Effects of temporal correlations on cascades[J]. Physical Review E, 2014, 89: 062815. [11] Xu X J, Li J Y, Fu X, et al. Impact of directionality and correlation on contagion[J]. Scientific Reports, 2018, 8: 4814. [12] McCullen N, Rucklidge A, Bale C, et al. Multiparameter models of innovation diffusion on complex networks[J]. SIAM Journal on Applied Dynamical Systems, 2013, 12: 515-532. [13] Melnik S, Ward J A, Gleeson J P, et al. Multi-stage complex contagions[J]. Chaos, 2013, 23: 013124. [14] Wang W, Tang M, Zhang H F, et al. Dynamics of social contagions with memory of nonredundant information[J]. Physical Review E, 2015, 92: 012820. [15] Ruan Z, Iñguez G, Karsai M, et al. Kinetics of social contagion[J]. Physical Review Letters, 2015, 115: 218702. [16] Brummitt C D, Lee K M, Goh K I. Multiplexity-facilitated cascades in networks[J]. Physical Review E, 2012, 85: 045102(R). [17] Yağan O, Gligor V. Analysis of complex contagions in random multiplex networks[J]. Physical Review E, 2012, 86: 036103. [18] Li Z, Yan F, Jiang Y. Cross-layers cascade in multiplex networks[J]. Autonomous Agents and Multi-Agent Systems, 2015, 29: 1186-1215. [19] Czaplicka A, Toral R, Miguel M S. Competition of simple and complex adoption on interdependent networks[J]. Physical Review E, 2016, 94: 062301. [20] Zhuang Y, Arenas A, Yaan O. Clustering determines the dynamics of complex contagions in multiplex networks[J]. Physical Review E, 2017, 95: 012312. [21] Gleeson J P, Cahalane D J. Seed size strongly affects cascades on random networks[J]. Physical Review E, 2007, 75: 056103. [22] Erdös P, Rényi A. On random graphs[J]. Publicationes Mathematicae Debrecen, 1959, 6: 290-297. [23] 许小可, 胡海波, 张伦, 等. 社交网络上的计算传播学[M]. 北京: 高等教育出版社, 2015. [24] Catanzaro M, Boguñá M, Pastor-Satorras R. Generation of uncorrelated random scale-free networks[J]. Physical Review E, 2005, 71: 027103. [25] Lee K M, Kim J Y, Cho W K, et al. Correlated multiplexity and connectivity of multiplex random networks[J]. New Journal of Physics, 2012, 14: 033027. [26] Lazer D, Pentland A, Adamic L, et al. Computational social science[J]. Science, 2009, 323: 721-723.