Abstract:In the regional coverage problem, it is necessary to coordinate and control the behavior of individuals and the distribution of swarm robots. This paper combines the principle of activator inhibition and the principle of stimulus response of bee colony, and proposes an algorithm (AISRA) combining activator inhibition and stimulation response. AISRA achieves close collaboration between individuals through the principle of activator inhibition; through individuals interaction, the distribution of robots in unknown regions is adjusted to give full play to the role of each robot. Simulation results and discussion show that AISRA can realize the cooperation between individuals and adjust the position distribution of robots, thereby improving regional coverage, reducing the number of repeated coverage, and improving the regional coverage efficiency of swarm robots.
[1]Acar E U, Choset H, Zhang Y G. Path planning for robotic demining: Robust sensor-based coverage of unstructured environments and probabilistic methods[J]. International Journal of Robotics Research, 2003, 22(7): 441-466. [2]Zuo L C, Huang Y Y, Hall E L. Region filling operations with random obstacle avoidance for mobile robots[J]. Journal of Robotic Systems, 1988, 5(2): 87-102. [3]Oksanen T, Visala A. Coverage path planning algorithms for agricultural field machines[J]. Journal of Field Robotics, 2009, 26(8): 651-668. [4]Farsi M, Ratcliff K, Johnson P J, et al. Robot control system for window cleaning[C]//American Control Conference. Piscataway, USA: IEEE, 1994: 994-995. [5]Jin X, Ray A. Navigation of autonomous vehicles for oil spill cleaning in dynamic and uncertain environments[J]. International Journal of Control, 2014, 87(4): 787-801. [6]张洪峰, 王硕, 谭民,等. 基于动态分区方法的多机器人协作地图构建[J]. 机器人, 2003, 25(2): 156-162. Zhang Hongfeng, Wang Suo, Tan Min, et al. A dynamic region decomposition approach to cooperative multi-robot map-building[J]. Robot, 2003, 25(2): 156-162. [7]薛颂东, 曾建潮. 群机器人研究综述[J]. 模式识别与人工智能, 2008, 21(2): 177-185. Xue Songdong, Zeng Jianchao. Swarm robotics:a survey[J]. Pattern Recognition and Artificial Intelligence, 2008, 21(2): 177-185. [8]Brambilla M, Ferrante E, Birattari M, et al. Swarm robotics: a review from the swarm engineering perspective[J]. Swarm Intelligence, 2013, 7(1): 1-41. [9]Cheng K, Adviser-Dasgupta P R. Multi-Robot Coalition Formation for Distributed Area Coverage[M]. Omaha: University of Nebraska, 2011. [10] 李慧勇. 群机器人启发式区域覆盖算法及围捕策略研究[D]. 太原:太原科技大学, 2011. Li H Y. Research on Heuristic region covering algorithm and rounding up strategy of swarm robot [D]. Taiyuan: Taiyuan University of Science & Technology, 2011. [11] Jeon H S. An efficient area maximizing coverage algorithm for intelligent robots with deadline situations[J]. International Journal of Control and Automation, 2013, 6(3): 49-56. [12] Ranjbar-Sahraei B. Weiss G, Nakisaee A. A multi-robot coverage approach based on stigmergic communication[C]//Procecdings of 10th German Conference on Multi-agent System Technologies. Berlin: Springer, 2012: 126-138. [13] Wagner I A, Lindenbaum M, Bruckstein A M. Distributed covering by ant—robots using evaporating traces[J]. IEEE Trans on Robotics and Automation, 1999, 15(5): 918-933. [14] 李冠男,董凌艳,徐红丽,等. 群机器人区域覆盖方法研究[J]. 机器人, 2017, 39(5): 670-679. Li Guan′nan, Dong Lingyan, Xu Hongli, et al. Research on region coverage approach with swarm robots[J]. Robot, 2017, 39(5): 670-679. [15] 张国有, 曾建潮. 基于黄蜂群算法的群机器人全区域覆盖研究[J]. 模式识别与人工智能, 2011, 24(3): 431-437. Zhang Guoyou, Zeng Jianchao. Area Coverage algorithmin swarm robotics based on wasp swarm algorithm[J]. Pattern Recognition and Artificial Intelligence, 2011, 24(3): 431-437. [16] Waibel M, Floreano D, Magnenat S, et al. Division of labour and colony efficiency in social insects: effects of interactions between genetic architecture, colony kin structure and rate of perturbations [J]. Proceedings of the Royal Society of London B: Biological Sciences, 2006, 273(1595): 1815-1823. [17] 肖人彬. 面向复杂系统的群集智能[M]. 北京: 科学出版社, 2013. [18] Bourgault F, Makarenko A A, Williams S B, et al. Information based adaptive robotic exploration[C]//2002 IEEE/RSJ International Conference on Intelligent Robots and Systems. Lausanne, Switzerland: IEEE, 2002: 540-545. [19] Tomatis N, Nourbakhsh I, Siegwart R. Simultaneous localization and map building: A global topological model with local metricmaps[C]//Proceedings of the 2001 IEEE/RSJ International Con-ference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2001: 421-426. [20] Fabrizi E, Saffiotti A. Augmenting topology-based maps with geo-metric information[J]. Robotics and Autonomous Systems, 2002, 40(2-3): 91-97. [21] 李昊, 叶文华, 满增光. 特征地图中基于高斯核函数的自动导引车Markov定位算法[J]. 计算机集成制造系统, 2018, 24(5): 1081-1088. Li H, Ye W H, Man Z G. Markov localization algorithm for AGV based on Gaussian kernel function in feature map[J]. Computer Integrated Manufacturing Systems, 2018, 24(5): 1081-1088. [22] 赵晓, 王铮, 黄程侃等. 基于改进A*算法的移动机器人路径规划[J]. 机器人, 2018, 40(6): 903-910. Zhao Xiao, Wang Zheng, Huang Chengkan, et al. Mobile robot path planning based on an Improved A* algorithm [J]. Robot, 2018, 40(6): 903-910. [23] 曹翔, 孙长银. 栅格地图中多机器人协作搜索目标[J]. 控制理论与应用, 2018, 35(3): 273-282. Cao X, Sun C Y. Cooperative target search of multi-robot in grid map [J]. Control Theory & Applications, 2018, 35(3): 273-282. [24] Lattorff H M G, Moritz R F A. Genetic underpinnings of division of labor in the honeybee (Apis mellifera)[J]. Trends in Genetics, 2013, 29(11): 641-648. [25] Naug D, Gadagkar R. Flexible labor division mediated by social interactions in an insect colony—a simulation model[J]. Journal of Theoretical Biology, 1999, 197(1): 123-133. [26] Huang Z Y, Robinson G E, Borst D W. Physiological correlates of division of labor among similarly aged honey bees[J]. J Comp Physiol, A, 1994, 174(6): 731-739. [27] Beshers S, Huang Z, Oono Y, et al. Social inhibition and the regulation of temporal polyethism in honey bees[J]. Journal of Theoretical Biology, 2001, 213(3): 461-479. [28] 肖人彬, 王英聪. 一种面向时间分配问题的群智能劳动分工新方法[J]. 智能系统学报, 2019, 14(3): 438-448. Xiao Renbin, Wang Yingcong. A new approach to labor division in swarm intelligence for time allocation problem[J]. CAAI Transactions on Intelligent Systems, 2019, 14(3): 438-448. [29] Bonabeau E, Theraulaz G, Deneubourg J L. Fixed response thresholds and the regulation of division of labor in insect societies[J]. Bulletin of Mathematical Biology, 1998, 60(4): 753-807. [30] Fernando D S, Ana L C B. Towards efficient multiagent task allocation in the RoboCup rescue: a biologically-inspired approach[J]. Autonomous Agents and Multi-Agent Systems, 2011, 22(3): 465-486.