Please wait a minute...
文章检索
复杂系统与复杂性科学  2019, Vol. 16 Issue (4): 1-12    DOI: 10.13306/j.1672-3813.2019.04.001
  本期目录 | 过刊浏览 | 高级检索 |
蜂群激发抑制与刺激响应相结合的群机器人区域覆盖算法
曹勇, 肖人彬
华中科技大学人工智能与自动化学院,武汉 430074
Swarm Robot Region Coverage Algorithm Combined with Bee Colony Activator Inhibition with Stimulus Response
CAO Yong, XIAO Renbin
School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(1811 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在区域覆盖问题中需要协调控制个体的行为以及群机器人的分布,结合激发抑制原理与刺激响应原理,提出一种蜂群激发抑制与刺激响应相结合的算法(AISRA)。AISRA通过激发抑制原理实现个体之间的紧密协作;通过个体与个体之间的交互,调整机器人在未知区域中的分布,充分发挥每个机器人的作用。仿真实验结果与讨论分析表明,AISRA能够实现个体之间的协作、调整机器人的位置分布,从而提升区域覆盖率、降低重复覆盖次数,提升群机器人的区域覆盖效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹勇
肖人彬
关键词 激发抑制刺激响应群机器人区域覆盖    
Abstract:In the regional coverage problem, it is necessary to coordinate and control the behavior of individuals and the distribution of swarm robots. This paper combines the principle of activator inhibition and the principle of stimulus response of bee colony, and proposes an algorithm (AISRA) combining activator inhibition and stimulation response. AISRA achieves close collaboration between individuals through the principle of activator inhibition; through individuals interaction, the distribution of robots in unknown regions is adjusted to give full play to the role of each robot. Simulation results and discussion show that AISRA can realize the cooperation between individuals and adjust the position distribution of robots, thereby improving regional coverage, reducing the number of repeated coverage, and improving the regional coverage efficiency of swarm robots.
Key wordsprinciple of activator inhibition    principle of stimulus response    swarm robot    area coverage
收稿日期: 2019-07-27      出版日期: 2020-01-21
ZTFLH:  TP391.9  
基金资助:科技创新2030—“新一代人工智能”重大项目(2018AAA0101200);国家自然科学基金(51875220)
通讯作者: 肖人彬(1965-),男,湖北武汉人,博士,教授,主要研究方向为复杂系统、群智能。   
作者简介: 曹勇(1993-),男,湖北孝感人,硕士研究生,主要研究方向为群智能、机器人。
引用本文:   
曹勇, 肖人彬. 蜂群激发抑制与刺激响应相结合的群机器人区域覆盖算法[J]. 复杂系统与复杂性科学, 2019, 16(4): 1-12.
CAO Yong, XIAO Renbin. Swarm Robot Region Coverage Algorithm Combined with Bee Colony Activator Inhibition with Stimulus Response. Complex Systems and Complexity Science, 2019, 16(4): 1-12.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2019.04.001      或      http://fzkx.qdu.edu.cn/CN/Y2019/V16/I4/1
[1]Acar E U, Choset H, Zhang Y G. Path planning for robotic demining: Robust sensor-based coverage of unstructured environments and probabilistic methods[J]. International Journal of Robotics Research, 2003, 22(7): 441-466.
[2]Zuo L C, Huang Y Y, Hall E L. Region filling operations with random obstacle avoidance for mobile robots[J]. Journal of Robotic Systems, 1988, 5(2): 87-102.
[3]Oksanen T, Visala A. Coverage path planning algorithms for agricultural field machines[J]. Journal of Field Robotics, 2009, 26(8): 651-668.
[4]Farsi M, Ratcliff K, Johnson P J, et al. Robot control system for window cleaning[C]//American Control Conference. Piscataway, USA: IEEE, 1994: 994-995.
[5]Jin X, Ray A. Navigation of autonomous vehicles for oil spill cleaning in dynamic and uncertain environments[J]. International Journal of Control, 2014, 87(4): 787-801.
[6]张洪峰, 王硕, 谭民,等. 基于动态分区方法的多机器人协作地图构建[J]. 机器人, 2003, 25(2): 156-162.
Zhang Hongfeng, Wang Suo, Tan Min, et al. A dynamic region decomposition approach to cooperative multi-robot map-building[J]. Robot, 2003, 25(2): 156-162.
[7]薛颂东, 曾建潮. 群机器人研究综述[J]. 模式识别与人工智能, 2008, 21(2): 177-185.
Xue Songdong, Zeng Jianchao. Swarm robotics:a survey[J]. Pattern Recognition and Artificial Intelligence, 2008, 21(2): 177-185.
[8]Brambilla M, Ferrante E, Birattari M, et al. Swarm robotics: a review from the swarm engineering perspective[J]. Swarm Intelligence, 2013, 7(1): 1-41.
[9]Cheng K, Adviser-Dasgupta P R. Multi-Robot Coalition Formation for Distributed Area Coverage[M]. Omaha: University of Nebraska, 2011.
[10] 李慧勇. 群机器人启发式区域覆盖算法及围捕策略研究[D]. 太原:太原科技大学, 2011.
Li H Y. Research on Heuristic region covering algorithm and rounding up strategy of swarm robot [D]. Taiyuan: Taiyuan University of Science & Technology, 2011.
[11] Jeon H S. An efficient area maximizing coverage algorithm for intelligent robots with deadline situations[J]. International Journal of Control and Automation, 2013, 6(3): 49-56.
[12] Ranjbar-Sahraei B. Weiss G, Nakisaee A. A multi-robot coverage approach based on stigmergic communication[C]//Procecdings of 10th German Conference on Multi-agent System Technologies. Berlin: Springer, 2012: 126-138.
[13] Wagner I A, Lindenbaum M, Bruckstein A M. Distributed covering by ant—robots using evaporating traces[J]. IEEE Trans on Robotics and Automation, 1999, 15(5): 918-933.
[14] 李冠男,董凌艳,徐红丽,等. 群机器人区域覆盖方法研究[J]. 机器人, 2017, 39(5): 670-679.
Li Guan′nan, Dong Lingyan, Xu Hongli, et al. Research on region coverage approach with swarm robots[J]. Robot, 2017, 39(5): 670-679.
[15] 张国有, 曾建潮. 基于黄蜂群算法的群机器人全区域覆盖研究[J]. 模式识别与人工智能, 2011, 24(3): 431-437.
Zhang Guoyou, Zeng Jianchao. Area Coverage algorithmin swarm robotics based on wasp swarm algorithm[J]. Pattern Recognition and Artificial Intelligence, 2011, 24(3): 431-437.
[16] Waibel M, Floreano D, Magnenat S, et al. Division of labour and colony efficiency in social insects: effects of interactions between genetic architecture, colony kin structure and rate of perturbations [J]. Proceedings of the Royal Society of London B: Biological Sciences, 2006, 273(1595): 1815-1823.
[17] 肖人彬. 面向复杂系统的群集智能[M]. 北京: 科学出版社, 2013.
[18] Bourgault F, Makarenko A A, Williams S B, et al. Information based adaptive robotic exploration[C]//2002 IEEE/RSJ International Conference on Intelligent Robots and Systems. Lausanne, Switzerland: IEEE, 2002: 540-545.
[19] Tomatis N, Nourbakhsh I, Siegwart R. Simultaneous localization and map building: A global topological model with local metricmaps[C]//Proceedings of the 2001 IEEE/RSJ International Con-ference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2001: 421-426.
[20] Fabrizi E, Saffiotti A. Augmenting topology-based maps with geo-metric information[J]. Robotics and Autonomous Systems, 2002, 40(2-3): 91-97.
[21] 李昊, 叶文华, 满增光. 特征地图中基于高斯核函数的自动导引车Markov定位算法[J]. 计算机集成制造系统, 2018, 24(5): 1081-1088.
Li H, Ye W H, Man Z G. Markov localization algorithm for AGV based on Gaussian kernel function in feature map[J]. Computer Integrated Manufacturing Systems, 2018, 24(5): 1081-1088.
[22] 赵晓, 王铮, 黄程侃等. 基于改进A*算法的移动机器人路径规划[J]. 机器人, 2018, 40(6): 903-910.
Zhao Xiao, Wang Zheng, Huang Chengkan, et al. Mobile robot path planning based on an Improved A* algorithm [J]. Robot, 2018, 40(6): 903-910.
[23] 曹翔, 孙长银. 栅格地图中多机器人协作搜索目标[J]. 控制理论与应用, 2018, 35(3): 273-282.
Cao X, Sun C Y. Cooperative target search of multi-robot in grid map [J]. Control Theory & Applications, 2018, 35(3): 273-282.
[24] Lattorff H M G, Moritz R F A. Genetic underpinnings of division of labor in the honeybee (Apis mellifera)[J]. Trends in Genetics, 2013, 29(11): 641-648.
[25] Naug D, Gadagkar R. Flexible labor division mediated by social interactions in an insect colony—a simulation model[J]. Journal of Theoretical Biology, 1999, 197(1): 123-133.
[26] Huang Z Y, Robinson G E, Borst D W. Physiological correlates of division of labor among similarly aged honey bees[J]. J Comp Physiol, A, 1994, 174(6): 731-739.
[27] Beshers S, Huang Z, Oono Y, et al. Social inhibition and the regulation of temporal polyethism in honey bees[J]. Journal of Theoretical Biology, 2001, 213(3): 461-479.
[28] 肖人彬, 王英聪. 一种面向时间分配问题的群智能劳动分工新方法[J]. 智能系统学报, 2019, 14(3): 438-448.
Xiao Renbin, Wang Yingcong. A new approach to labor division in swarm intelligence for time allocation problem[J]. CAAI Transactions on Intelligent Systems, 2019, 14(3): 438-448.
[29] Bonabeau E, Theraulaz G, Deneubourg J L. Fixed response thresholds and the regulation of division of labor in insect societies[J]. Bulletin of Mathematical Biology, 1998, 60(4): 753-807.
[30] Fernando D S, Ana L C B. Towards efficient multiagent task allocation in the RoboCup rescue: a biologically-inspired approach[J]. Autonomous Agents and Multi-Agent Systems, 2011, 22(3): 465-486.
[1] 胡亮, 肖人彬, 王英聪. 蜂群激发抑制算法及其在交通信号配时中的应用[J]. 复杂系统与复杂性科学, 2019, 16(2): 9-18.
[2] 刘琪, 肖人彬. 观点动力学视角下基于意见领袖的网络舆情反转研究[J]. 复杂系统与复杂性科学, 2019, 16(1): 1-13.
[3] 蒲玮, 李雄. 基于能力组件的作战仿真Agent模块化结构设计[J]. 复杂系统与复杂性科学, 2017, 14(3): 45-57.
[4] 崔琼, 李建华, 冉淏丹, 南明莉. 任务流驱动的指挥信息系统动态超网络模型[J]. 复杂系统与复杂性科学, 2017, 14(3): 58-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed