Please wait a minute...
文章检索
复杂系统与复杂性科学  2020, Vol. 17 Issue (4): 16-29    DOI: 10.13306/j.1672-3813.2020.04.003
  本期目录 | 过刊浏览 | 高级检索 |
三层复杂网络模型构建及特性分析
马海瑛1,2,3, 肖玉芝1,2,3, 赵海兴1,2,3, 吴欢1, 罗海秀1,2,3
1.青海师范大学计算机学院,西宁 810016;
2.青海省藏文信息处理与机器翻译重点实验室,西宁 810008;
3.藏文信息处理教育部重点实验室,西宁 810008
Three-Layer Complex Network Model Construction and Characteristic Analysis
MA Haiying1,2,3, XIAO Yuzhi1,2,3 , ZHAO Haixing1,2,3, WU Huan1, LUO Haixiu1,2,3
1. Computer Department, Qinghai Normal University, Xining 810016, China;
2. Tibetan Information Processing and Machin Translation Key Laboratory of Qinghai Province, Xining 810008, China;
3. Key Laboratory of Tibetan information Processing, Ministry of Education, Xining 810008, China
全文: PDF(4100 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了揭示多层复杂网络的特性,提出和建立了3种三层复杂网络演化模型,并定义了随机概率定量刻画多层网络层间依赖关系。实验结果表明:不同随机概率表征出三层网络具有单峰、双峰以及三峰等特性的网络度分布,随机概率趋于10-3时,三层无标度网络呈现出幂律和单峰共现特性;随机概率对三层网络的聚类系数和平均路径长度影响相对较小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马海瑛
肖玉芝
赵海兴
吴欢
罗海秀
关键词 多层网络层级连接双峰特性三峰特性    
Abstract:In order to reveal the characteristics of multilayer complex networks, three kinds of evolution models of three-layer complex networks are proposed, and a probability is defined to quantitatively describe the interlayer dependence of multilayer networks. The experimental results show that different random probabilities represent the degree distribution of three-layer networks with the characteristics of single peak, double peak and three peak. When the probabilities tends to 10-3, the three-layer scale free networks show the characteristics of power law and single peak co-occurrence; the influence of probability on the clustering coefficient and average path length of three-layer networks is relatively small.
Key wordsmultilayer network    hierarchical connection    bimodal characteristic    three peaks
收稿日期: 2020-02-26      出版日期: 2020-12-21
ZTFLH:  N94  
基金资助:国家自然科学基金(61763041,11661069);青海省科技厅项目(2020-GX-112)
通讯作者: 赵海兴(1969-),男,青海湟中人,博士,教授,主要研究方向为复杂网络,超图理论,自然语言处理。   
作者简介: 马海瑛(1994-),女,青海大通人,硕士研究生,主要研究方向为复杂网络、多层网络理论与应用。
引用本文:   
马海瑛, 肖玉芝, 赵海兴, 吴欢, 罗海秀. 三层复杂网络模型构建及特性分析[J]. 复杂系统与复杂性科学, 2020, 17(4): 16-29.
MA Haiying, XIAO Yuzhi, ZHAO Haixing, WU Huan, LUO Haixiu. Three-Layer Complex Network Model Construction and Characteristic Analysis. Complex Systems and Complexity Science, 2020, 17(4): 16-29.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2020.04.003      或      http://fzkx.qdu.edu.cn/CN/Y2020/V17/I4/16
[1] 汪小帆,李翔,陈关荣. 网络科学导论[M]. 北京:高等教育出版社, 2012.
[2] Ted G.Lewis. Network Science Theory and Applications[M]. Beijing: Machine Press, 2011.
[3] Barabas A L, Network Science[M]. Cambridge:Cambridge University Press, 2016.
[4] Erdos P, Renyi A. On random graphs I[J]. Pub Math Debrecen, 1959, 4: 3286-3291.
[5] Barabas A L, Albert R. Emergence of scaling in random network[J]. Science, 1999, 286(5439): 509-512.
[6] Watts D J, Strongatz S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440-442.
[7] 郭进利. 复杂网络和人类行为动力学演化模型[M]. 北京:科学出版社, 2013.
[8] 吕林媛, 周涛. 链路预测[M]. 北京:高等教育出版社, 2013.
[9] 史定华. 网络度分布理论[M]. 北京:高等教育出版社, 2011.
[10] 何大韧,刘宗华,汪秉宏. 复杂系统与复杂网络[M]. 北京:高等教育出版社, 2009.
[11] 方锦清. 从单一网络向《网络的网络》的转变进程——略论多层次超网络模型的探索与挑战[J]. 复杂系统与复杂性科学, 2016,13(1): 40-47.
Fang Jinqing. From a single network to "network of networks" development process: some discussions on the exploration of multilayer supernetwork models and challenge[J]. Complex Systems and Complexity Science, 2016,13(1): 40-47.
[12] 先兴平,吴涛. 大数据时代网络科学研究进展—多层复杂网络理论[J]. 产业与科技论坛, 2016(19): 80-81.
Xian Xingping, Wu Tao. Research progress of network science in the era of big data-multilayer complex network theory[J]. Estate and Science Tribune, 2016(19): 80-81.
[13] 陆君安. 从单层网络到多层网络——结构、动力学和功能[J]. 现代物理知识, 2015, 27(4): 3-8.
Lu Junan. From single-layer networks to multilayer networks- structure, dynamics, and function[J]. Modern Physics, 2015, 27(4): 3-8.
[14] 徐明明,陆君安,周进. 两层星形网络的特征值谱及同步能力[J]. 物理学报, 2016, 65(2): 383-395.
Xu Mingming, Lu Junan, Zhou Jin. Synchronizability and eigenvalues of two-layer star networks[J]. Acta Physica Sinica, 2016, 65(2): 383-395.
[15] Li Y, Wu X, Lu J, et al. Synchronizability of duplex networks[J]. IEEE Transactions on Circuits and Systems Ii-express Briefs, 2016, 63(2): 206-210.
[16] Xu M, Zhou J, Lu J, et al. Synchronizability of two-layer networks[J]. European Physical Journal B, 2015, 88(9): 240.
[17] Ning D, Wu X Q, Lu J, et al. Driving-based generalized synchronization in two-layer networks via pinning control[J]. Chaos, 2015, 25(11): 113104.
[18] Boccaletti S, Bianconi G, Criado R, et al. The structure and dynamics of multilayer network[J]. Physics Reports, 2014, 544(1): 1-122.
[19] Tauch S, Liu W, Pears R, et al. Measuring cascade effects in interdependent networks by using effective graph resistance[C]. Conference on Computer Communications Workshops, Hongkong, 2015: 683-688.
[20] Meng L, Hulovatyy Y, Striegel A, et al. On the interplay between individuals’ evolving interaction patterns and traits in dynamic multiplex social networks[J]. IEEE Transactions on Network Science and Engineering, 2016, 3(1): 32-43.
[21] 孙晓璇, 吴晔, 冯鑫, 等. 普铁-高铁的实证双层网络结构与鲁棒性分析[J]. 电子科技大学学报, 2019, 48(2): 315-320.
Sun Xiaoxuan, Wu Ye, Feng Xin, et al. Structer characteristics and robustness analysis of multilayer network of high speed railway and ordinary railway[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(2): 157-162.
[22] 伍杰华, 沈静, 周蓓. 基于迁移成分分析的多层社交网络链接分类[J]. 数据分析与知识发现, 2018, 2(9): 88-99.
Wu Jiehua, Shen Jing, Zhou Bei. Classifying multilayer social network links based on transfer component analysis[J]. Data Analysis and Knowledge Discovery, 2018, 2(9): 88-99.
[23] 张磊, 马静, 李丹丹, 等. 语义社会网络的超网络模型构建及关键节点自动化识别方法研究[J]. 现代图书情报技术, 2016, 32(3): 8-17.
Zhang Lei, Ma Jing, Li Dandan, et al. Hypernetwork model for semantic social network and automatic identification of key nodes[J]. New Technology of Library and Information Servic, 2016, 32(3): 8-17.
[24] 刘强, 方锦清, 李永. 基于统一混合网络理论框架的多层次超网络模型研究[J]. 复杂系统与复杂性科学, 2016, 13(1):84-90.
Liu Qiang, Fang Jinqing, Li Yong. Multilayer supernetwork model based on the unifying hybrid network theory framework[J]. Complex Systems and Complexity Science, 2016, 13(1): 84-90.
[25] 刘强, 方锦清, 李永. 三层超网络演化模型特性研究[J]. 复杂系统与复杂性科学, 2015, 12(2): 70-77.
Liu Qiang, Fang Jingqing, Li Yong. Some characteristics of three-layer supernetwork evolution model[J]. Complex Systems and Complexity Science, 2015, 12(2): 70-77.
[26] Nicosia V, Bianconi G, Latora V, et al. Nonlinear growth and condensation in multiplex networks[J]. Physical Review E, 2014, 90(4): 042807.
[27] Min B, Yi S D, Lee K M, et al. Network robustness of multiplex networks with interlayer degree correlations[J]. Physical Review E, 2014, 89(4): 042811.
[1] 王兴隆, 刘洋. 航空多层网络弹性测度与分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 31-38.
[2] 徐开俊, 吴佳益, 杨泳, 梁磊. 中国航线网络结构的多层性分析[J]. 复杂系统与复杂性科学, 2020, 17(2): 39-46.
[3] 李守伟, 文世航, 王磊. 基于多层网络视角的企业担保结构研究[J]. 复杂系统与复杂性科学, 2018, 15(4): 10-16.
[4] 武利琴, 王金环, 徐勇. 一种基于半张量积的多层网络演化博弈方法[J]. 复杂系统与复杂性科学, 2017, 14(3): 68-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed