Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (3): 68-74    DOI: 10.13306/j.1672-3813.2017.03.006
  本期目录 | 过刊浏览 | 高级检索 |
一种基于半张量积的多层网络演化博弈方法
武利琴, 王金环, 徐勇
河北工业大学理学院,天津 300401
Multilayer Evolutionary Networked Games Base on Semi-Tensor Product
WU Liqin, WANG Jinhuan, XU Yong
School of Sciences, Hebei University of Technology, Tianjin 300401, China
全文: PDF(769 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对多层网络演化博弈,采用半张量积方法,遵循短视最优响应策略更新原则,将博弈动态过程进行公式化并研究其策略最优问题。首先,通过半张量积将多层网络演化博弈转化成代数公式的形式,建立相应的转化算法;其次,基于该公式,讨论了博弈的动态行为;最后,通过增加伪玩家到博弈中来研究策略最优问题,目的是设计自由控制序列来最大化伪玩家的平均收益,从而得到最优控制序列。并举例验证了研究结果的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武利琴
王金环
徐勇
关键词 多层网络演化博弈代数公式策略最优半张量积    
Abstract:Using the semi-tensor product method, this paper investigates the algebraic formulation and strategy optimization for a class of multilayer evolutionary networked games with “myopic best response adjustment” rules. Firstly, the dynamics of the multilayer evolutionary networked game is converted to formulate for the game. Secondly, based on the algebraic form, the dynamic behavior of the multilayer evolutionary networked games is discussed. Finally, the strategy optimization problem is considered by adding a pseudo-player. The aim is to design optimal control sequence to maximize the average income of pseudo-players. An illustrative example shows the effectiveness of this paper.
Key wordsmultilayer evolutionary networked games    algebraic formulation    strategy optimiza-tion    semi-tensor product
收稿日期: 2016-12-21      出版日期: 2019-01-10
ZTFLH:  O151.21  
基金资助:国家自然科学基金(61203142),河北省自然科学基金(F2014202206)
通讯作者: 徐勇(1971),男,山东蒙阴人,博士,教授,主要研究方向为非线性系统、复杂网络。   
作者简介: 武利琴(1992),女,山西吕梁人,硕士研究生,主要研究方向为网络演化博弈。
引用本文:   
武利琴, 王金环, 徐勇. 一种基于半张量积的多层网络演化博弈方法[J]. 复杂系统与复杂性科学, 2017, 14(3): 68-74.
WU Liqin, WANG Jinhuan, XU Yong. Multilayer Evolutionary Networked Games Base on Semi-Tensor Product. Complex Systems and Complexity Science, 2017, 14(3): 68-74.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.03.006      或      http://fzkx.qdu.edu.cn/CN/Y2017/V14/I3/68
[1] Cheng D Z, Xu T T, He F H, et al. Semi-tensor product approach to networked evolutionary games[J].Control Theory and Technology, 2014, 12(2):198204.
[2]Cheng D Z, Xu T T, Qi H S. Evolutionary stability strategy of networked evolutionary games[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 16411653.
[3]Cheng D Z, He F H, Qi H S, et al. Modeling analysis and control of networked evolutionary games[J].IEEE Transactions on Automatic Control, 2015, 60(9):24022415.
[4]Guo P L, Wang Y Z, Li H T. Algebraic formulation and strategy optimization for a class of evolutionary networked games via semi-tensor product method[J]. Automatic, 2013, 49:33843389.
[5]Ge M X, Li Y, Zhao J L, et al. Strategy consensus of networked evolutionary games[J]. Journal of Shandong University(Natural Science) , 2015, 50(11):113118.
[6]Du W B, Cao X B, Hu M B. The effect of asymmetric payoff mechanism on evolutionary networked prisoner’s dilemma game[J]. Physic A:Statistical Mechanic and its Application, 2009, 388(24):50055012.
[7]Zhao Y, Li Z Q, Cheng D Z. Optimal control of logical control networks[J]. IEEE Transactions on Automatic Control, 2011, 56(56):17661776.
[8]Wang D Z, Lang M X, Sun Y. Evolutionary game analysis of co-opetition relationship between regional logistics nodes[J].Journal of Applied Research & Technology, 2014, 12(2):251260.
[9]陆君安. 从单层网络到多层网络的——结构、动力学和功能[J].统计物理和复杂系统研究前沿进展专题II, 2015, 4(27):38.
Lu Junan. From single-layer network to multi-layer network-structure, dynamics and function[J]. Statistical Physics and Complex Systems Research Erontier Development TopicⅡ, 2015, 4(27):38.
[10] Gao B, Deng Z H, Zhao D W. Competing spreading processes and immunization in multiplex networks[J]. Chaos, Solitons and Fractals, 2016,93:175181.
[11] Wu Q C, Lou Y J, Zhu W F. Epidemic outbreak for an SIS model in multiplex networks with immunization[J].Mathematical Biosciences, 2016,277:3846.
[12] Luo C, Zhang X L, Liu H, et al. Cooperation in memory-based prisoner’s dilemma game on interdependent networks[J]. PhysicA,2016, 450:560569.
[13] Meng X K, Xia C Y, Gao Z K, et al. Spatial prisoner’s dilemma games with increasing neighborhood size and individual diversity on two interdependent lattices[J].Physics Letters A, 2015, 379:767773.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed