Please wait a minute...
文章检索
复杂系统与复杂性科学  2021, Vol. 18 Issue (2): 51-59    DOI: 10.13306/j.1672-3813.2021.02.006
  本期目录 | 过刊浏览 | 高级检索 |
开源软件核心开发者流失的级联效应仿真
卢冬冬, 吴洁, 刘鹏, 盛永祥, 张鹏臣
江苏科技大学经济管理学院,江苏 镇江 212003
Simulation of the Cascading Effect by Core Developers Turnover in Open Source Software
LU Dongdong, WU Jie, LIU Peng, SHENG Yongxiang, ZHANG Pengchen
School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang 212003, China
全文: PDF(1654 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 开源软件核心开发者的流失不仅会严重影响项目的开发进程,甚至会造成一系列的级联效应。从动态视角探讨核心开发者流失的影响并对其采取保护措施能有效促进社区创新产出。基于复杂网络视角,以开源项目AngularJS为例,通过多属性决策的方法识别出核心开发者。在此基础上,构建负载容量模型,探究核心开发者流失的级联失效现象。研究发现:核心开发者间的紧密协作关系和网络结构中占据重要位置的核心开发者流失会导致较为严重的级联失效现象;初始工作负荷较大的开发者流失则会造成更为严重的二次传播级联失效现象。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢冬冬
吴洁
刘鹏
盛永祥
张鹏臣
关键词 开源软件核心开发者负载容量模型级联效应    
Abstract:Not only the development process will be seriously affected, but also it will cause a serious cascading effects when the core developers in open source software turnover. From the dynamic perspective to explore the impact by core developer turnover, and taking effective measures to protect them will promote emergence of innovation. From the perspective of complex network, taking AngularJS as an example to identify the core developers by the method of multi-attribute decision. Then we build the load capacity model to study the cascading failures by core developers turnover. The study found that the close collaboration between core developers and the core developers who occupy an important position in the network turnover will lead to seriously cascading failures; What's more, developers with larger initial workloads turnover will cause more serious cascading failure phenomenon by secondary propagation.
Key wordsopen source software    core developers    load capacity model    cascading effect
收稿日期: 2020-05-19      出版日期: 2021-05-10
ZTFLH:  TP391  
  G206  
基金资助:国家自然科学基金(71871108);国家社会科学基金后资助项目(19FGLB029);江苏高校哲学社会科学研究重点项目(2018SJZDI053)
通讯作者: 吴洁(1968-),女,江苏滨海人,博士,教授,主要研究方向为技术创新、知识管理。   
作者简介: 卢冬冬(1995-),男,江苏如皋人,硕士研究生,主要研究方向为复杂网络、知识管理。
引用本文:   
卢冬冬, 吴洁, 刘鹏, 盛永祥, 张鹏臣. 开源软件核心开发者流失的级联效应仿真[J]. 复杂系统与复杂性科学, 2021, 18(2): 51-59.
LU Dongdong, WU Jie, LIU Peng, SHENG Yongxiang, ZHANG Pengchen. Simulation of the Cascading Effect by Core Developers Turnover in Open Source Software. Complex Systems and Complexity Science, 2021, 18(2): 51-59.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2021.02.006      或      http://fzkx.qdu.edu.cn/CN/Y2021/V18/I2/51
[1]刘鹏, 张鹏臣, 王念新.开源软件社区开发者协作网络结构演化分析——以Cloud Foundry社区为例[J].复杂系统与复杂性科学,2019,16(4):31-43.
Liu Peng, Zhang Pengchen, Wang Nianxin. Structure and evolution of developer collaboration network in cloud foundry OSS community[J]. Complex Systems and Complexity Science, 2019,16(4):31-43.
[2]O'Mahony S. Guarding the commons: how community managed software projects protect their work[J]. Research Policy, 2003, 32(7): 1179-1198.
[3]Raymond E. The cathedral and the bazaar[J]. Knowledge Technology & Policy, 1999, 12(3):23-49.
[4]潘向东,杨建梅,白桦.开源社区雪崩效应实证研究:以Sourceforge为例[J].复杂系统与复杂性科学,2015,12(4):61-70.
Pan Xiangdong, Yang Jianmei, Bai Hua. Empirical study of avalanche dynamics on open source community: the case of sourceforge.net[J]. Complex Systems and Complexity Science, 2015,12(4):61-70.
[5]何鹏, 李兵, 杨习辉, 等. 开源软件社区开发者偏好合作行为研究[J]. 计算机科学, 2015, 42(2): 161-166.
He Peng, Li Bing, Yang Xihui, et al. Research on developer preferential collaboration in open-source software community[J]. Computer Science, 2015,42(2): 161-166.
[6]夏昊翔, 张潇, 张醒洲. OpenStack开源软件开发者协作网络分析[J]. 系统工程理论与实践, 2017, 37(5): 1373-1382.
Xia Haoxiang, Zhang Xiao, Zhang Xingzhou. Study on collaborative network of OpenStack OSS developers[J]. Systems Engineering-Theory & Practice, 2017, 37(5): 1373-1382.
[7]Gencer M, Oba B. Taming of “Openness” in software innovation systems[J]. International Journal of Innovation in the Digital Economy, 2017, 8(2): 1-15.
[8]Aljemabi M A, Wang Z. Empirical study on the evolution of developer social networks[J]. IEEE Access, 2018, 6:51049-51060.
[9]Huizingh E K R E. Open innovation: state of the art and future perspectives[J]. Technovation, 2010, 31(1).
[10] 陈晓红, 周源, 苏竣. 分布式创新、知识共享与开源软件项目绩效的关系研究[J]. 科学学研究, 2016, 34(2): 228-235+245.
Chen Xiaohong, Zhou Yuan, Su Jun. Relationship between distributed innovation, knowledge sharing and performance of open source software projects[J]. Studies in Science of Science, 2016, 34(2): 228-235+245.
[11] Mockus A. Two case studies of open source software development: apache and mozilla[J]. Acm Transactions on Software Engineering & Methodology, 2002, 11.
[12] Nakakoji K, Yamamoto Y, Nishinaka Y, et al. Evolution patterns of open-source software systems and communities[C]//Proceedings of the International Workshop on Principles of Software Evolution. New York, United States, ACM, 2002: 76-85.
[13] Oliva G A, Santana F W, Oliveira K C M D, et al. Characterizing key developers: a case study with apache ant[C]// International Conference on Collaboration & Technology. Raesfeld, Germany, Springer-Verlag, 2012.
[14] 张晓冬, 周宏丽, 胡杨. 大规模协同环境下知识协作网络的动态鲁棒性[J]. 计算机集成制造系统, 2017, 23(11): 2353-2360.
Zhang Xiaodong, Zhou Hongli, Hu Yang. Dynamic robustness of knowledge collaborative network under mass collaboration environment[J]. Computer Integrated Manufacturing Systems, 2017, 23(11): 2353-2360.
[15] Zhou H L, Zhang X D. Dynamic robustness of knowledge collaboration network of open source product development community[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 490: 601-612.
[16] Joblin M, Apel S, Hunsen C, et al. Classifying developers into core and peripheral: an empirical study on count and network metrics[C]. 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). Buenos Aires, Argentina, 2017.
[17] 徐冰村,张晓冬.开源社区中的意见领袖识别及跟随效应仿真[J].情报理论与实践,2019,42(12):101-107.
Xu Bingcun, Zhang Xiaodong. Opinion leader identification and following effect simulation in the open source community[J]. Information Studies:Theory & Application,2019,42(12):101-107.
[18] 吴哲夫, 朱天潼, 宣琦, 等. 基于贡献分配的开源软件核心开发者评估[J]. 软件学报, 2018(8):2272-2282.
Wu Zhefu, Zhu Tiantong, Xuan Qi, et al. Evaluation of core developers in open source software by contribution allocation[J]. Journal of Software, 2018(8):2272-2282.
[19] 廖志芳, 李斯江, 贺大禹, 等. GitHub开源软件开发过程中关键用户行为分析[J]. 小型微型计算机系统, 2019, 40(1): 164-168.
Liao Zhifang, Li Sijiang, He Dayu, et al. Analysis of key user behavior in GitHub open source software development[J]. Journal of Chinese Computer Systems, 2019, 40(1): 164-168.
[20] Guimera R, Amaral L. Functional cartography of complex metabolic networks[J]. Nature, 2005, 433(7028):895-900.
[21] 何鹏,李兵,潘伟丰.基于管理者合作网络的开源软件开发社区中心性分析[J].小型微型计算机系统,2013,34(1):54-57.
He Peng, Li Bing, Pan Weifeng. Centrality analysis of the manager collaboration network in open source community[J]. Journal of Chinese Computer Systems, 2013,34(1):54-57.
[22] 米传民,刘思峰,党耀国,等.灰色熵权聚类决策方法研究[J].系统工程与电子技术,2006(12):1823-1825,1844.
Mi Chuanmin, Liu Sifeng, Dang Yaoguo, et al. Study on grey entropy weight clustering decision-making[J]. Systems Engineering and Electronics, 2006(12):1823-1825,1844.
[23] 种鹏云,帅斌.连环恐怖袭击下危险品运输网络级联失效建模[J].系统工程理论与实践,2014,34(4):1059-1065.
Chong Pengyun, Shuai Bin. Model of cascading failure in hazardous materials transportation network under series of terrorist attacks[J]. Systems Engineering-Theory & Practice,2014,34(4):1059-1065.
[24] 王建伟,蔡琳,蒋晨.考虑边权重和耦合强度的相互依赖网络级联故障模型研究[J].管理工程学报,2018,32(4):149-157.
Wang Jianwei, Cai Lin, Jiang Chen. Cascading model in interdependent networks with edge weight and coupled strength[J]. Journal of Industrial Engineering and Engineering Management,2018,32(4):149-157.
[25] 王建伟,荣莉莉,王铎.基于节点局域特征的复杂网络上相继故障模型[J].管理科学学报,2010,13(8):42-50.
Wang Jianwei, Rong Lili, Wang Duo. Model for cascading failures on complex networks based on local characteristics of nodes[J]. Journal of Management Sciences in China,2010,13(8):42-50.
[26] 郝羽成,李成兵,魏磊.考虑节点过载的复杂网络级联失效模型[J].系统工程与电子技术,2018,40(10):2282-2287.
Hao Yucheng, Li Chengbing, Wei Lei. Cascading failure model of complex networks considering overloaded nodes[J]. Systems Engineering and Electronics,2018,40(10):2282-2287.
[27] 张延禄,杨乃定.R&D网络风险相继传播模型构建及仿真[J].系统工程理论与实践,2014,34(3):723-731.
Zhang Yanlu, Yang Naiding. Risk cascading propagation modeling and simulation in R&D network[J]. Systems Engineering-Theory & Practice,2014,34(3):723-731.
[28] 王建伟. 网络上的相继故障模型研究[D].大连:大连理工大学,2010.
Wang Jianwei. Study on cascading failure models on networks[D].Dalian: Dalian University of Technology,2010.
[1] 胡亮, 肖人彬, 王英聪. 蜂群激发抑制算法及其在交通信号配时中的应用[J]. 复杂系统与复杂性科学, 2019, 16(2): 9-18.
[2] 刘琪, 肖人彬. 观点动力学视角下基于意见领袖的网络舆情反转研究[J]. 复杂系统与复杂性科学, 2019, 16(1): 1-13.
[3] 李甍娜, 郭进利, 卞闻, 常宁戈, 肖潇, 陆睿敏. 网络视角下的唐诗[J]. 复杂系统与复杂性科学, 2017, 14(4): 66-71.
[4] 蒲玮, 李雄. 基于能力组件的作战仿真Agent模块化结构设计[J]. 复杂系统与复杂性科学, 2017, 14(3): 45-57.
[5] 崔琼, 李建华, 冉淏丹, 南明莉. 任务流驱动的指挥信息系统动态超网络模型[J]. 复杂系统与复杂性科学, 2017, 14(3): 58-67.
[6] 杨晓波, 陈楚湘, 王至婉. 基于节点相似性的LFM社团发现算法[J]. 复杂系统与复杂性科学, 2017, 14(3): 85-90.
[7] 于同洋, 肖人彬, 侯俊东. 网络舆情结构逆转建模与仿真:基于改进Deffuant模型[J]. 复杂系统与复杂性科学, 2019, 16(3): 30-39.
[8] 瞿倩倩, 韩华, 吕亚楠, 贾承丰, 马媛媛. 基于社交网络结构特征的S2IR谣言传播模型[J]. 复杂系统与复杂性科学, 2019, 16(3): 48-59.
[9] 曹勇, 肖人彬. 蜂群激发抑制与刺激响应相结合的群机器人区域覆盖算法[J]. 复杂系统与复杂性科学, 2019, 16(4): 1-12.
[10] 卢冬冬, 吴洁, 刘鹏, 盛永祥. 网络稳定性研究——以AngularJS为例[J]. 复杂系统与复杂性科学, 2020, 17(3): 38-46.
[11] 林青轩, 郭强, 邓春燕, 王雅静, 刘建国. 基于孤立森林采样策略的企业异常用水模式检测[J]. 复杂系统与复杂性科学, 2020, 17(3): 47-51.
[12] 赵子鸣, 勾文沙, 高晓惠, 陈清华. COVID-19疫情防控需要社区监测及接触者追踪并重[J]. 复杂系统与复杂性科学, 2020, 17(4): 1-8.
[13] 王雅静, 郭强, 邓春燕, 林青轩, 刘建国. 基于LDA主题模型的用户特征预测研究[J]. 复杂系统与复杂性科学, 2020, 17(4): 9-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed