Please wait a minute...
文章检索
复杂系统与复杂性科学  2021, Vol. 18 Issue (2): 60-65    DOI: 10.13306/j.1672-3813.2021.02.007
  本期目录 | 过刊浏览 | 高级检索 |
卷积神经网络复杂性质与准确率的关系研究
王光波, 孙仁诚, 隋毅, 邵峰晶
青岛大学计算机科学技术学院,山东 青岛 266071
On the Relationship Between the Complexity and Accuracy of Convolutional Neural Networks
WANG Guangbo, SUN Rencheng, SUI Yi, SHAO Fengjing
School of Computer Science and Technology, Qingdao University, Qingdao 266071, China
全文: PDF(1187 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 卷积神经网络的结构也会对其性能造成影响,设计卷积神经网络更多的是依靠经验和强大的算力,如何设计出性能更好的卷积神经网络目前缺少有效的理论支撑。为了解决这一问题,在分析典型卷积神经网络拓扑复杂性的基础上,为快速实现满足给定复杂性特征的卷积神经网络,给出了由复杂网络拓扑到卷积神经网络的生成算法,通过建立系列不同拓扑特征的卷积神经网络,采用Cifar10和Cifar100数据集分析了平均聚集系数、平均路径长度、图密度、模块度等拓扑性质对卷积神经网络识别有效性的影响关系。实验表明在神经网络的参数数量基本相等的情况下,平均聚类系数会对卷积神经网络的性能产生影响。最终得到结论在统计意义上,平均聚集系数小的网络结构会有更好的性能表现,这为进一步设计出更好的卷积神经网络提供了理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王光波
孙仁诚
隋毅
邵峰晶
关键词 卷积神经网络拓扑结构平均聚集系数准确率    
Abstract:The structure of the convolutional neural network will also affect its performance. The design of the convolutional neural network relies more on experience and powerful computing power. How to design a neural network with better performance lacks effective theoretical support. In order to solve this problem, based on the analysis of the complexity of the typical convolutional neural network topology, in order to quickly realize the convolutional neural network that meets the given complexity characteristics, the generation from complex network topology to convolutional neural network is given. The algorithm, through the establishment of a series of convolutional neural networks with different topological features, uses the Cifar10 and Cifar100 data sets to analyze the relationship between the average clustering coefficient, average path length, graph density, modularity and other topological properties on the recognition effectiveness of the convolutional neural network. Experiments show that when the number of parameters of the neural network is basically equal, the average clustering coefficient will affect the performance of the convolutional neural network. The final conclusion is that in a statistical sense, a network structure with a small average clustering coefficient will have better performance, which provides a theoretical basis for further designing a better convolutional neural network.
Key wordsconvolutional neural network    topology    average clustering coefficient    accuracy
收稿日期: 2020-08-20      出版日期: 2021-05-10
ZTFLH:  N945.15  
  TP273.1  
基金资助:国家自然科学青年基金(41706198)
通讯作者: 孙仁诚(1977-),男,山东青岛人,副教授,主要研究方向为基于复杂网络的大数据分析。   
作者简介: 王光波(1994-),男,山东济南人,硕士研究生,主要研究方向为网络大数据分析。
引用本文:   
王光波, 孙仁诚, 隋毅, 邵峰晶. 卷积神经网络复杂性质与准确率的关系研究[J]. 复杂系统与复杂性科学, 2021, 18(2): 60-65.
WANG Guangbo, SUN Rencheng, SUI Yi, SHAO Fengjing. On the Relationship Between the Complexity and Accuracy of Convolutional Neural Networks. Complex Systems and Complexity Science, 2021, 18(2): 60-65.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2021.02.007      或      http://fzkx.qdu.edu.cn/CN/Y2021/V18/I2/60
[1]Simard D, Nadeau L, Kroger H.Faster learning in small-world neural networks[J].Physics Letters A, 2005, 336(1): 8-15.
[2]Xie S, Kirillov A, Girshick R, et al. Exploring randomly wired neural networks for image recognition[DB/OL].[2020-03-20]. https://arxiv.org/pdf/1904.01569.pdf.
[3]Lécun Y, Bottou L. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
[4]Alom M Z, Taha T M, Yakopcic C, et al. The history began from alexnet: a comprehensive survey on deep learning approaches[DB/OL].[2020-03-20].https://arxiv.org/ftp/arxiv/papers/1803/1803.01164.pdf.
[5]Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[DB/OL].[2020-03-20]. https://arxiv.org/pdf/1409.1556v6.pdf.
[6]Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[DB/OL].[2020-03-20].https://arxiv.org/pdf/1602.07261v1.pdf.
[7]He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[DB/OL].[2020-03-20]. https://arxiv.org/pdf/1512.03385.pdf.
[8]Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA,2017: 4700-4708.
[9]Zoph B, Vasudevan V, Shlens J, et al. Learning transferable architectures for scalable image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, 2018: 8697-8710.
[10] Eggemann N, Noble S D. The clustering coefficient of a scale-free random graph[J]. Discrete Applied Mathematics, 2011, 159(10): 953-965.
[11] Newman M E. The structure and function of complex networks[J].Siam Review,2003,45(2): 167-256.
[12] Newman M E J, Girvan M. Finding and evaluating community structure in networks[J]. Physical Review E, 2004, 69(2): 026113.
[13] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning. Miami, Florida, USA, 2015: 448-456.
[14] Xu L, Choy C, Li Y W. Deep sparse rectifier neural networks for speech denoising[C]//2016 IEEE International Workshop on Acoustic Signal Enhancement. Xi'an,China, 2016: 1-5.
[15] Kingma D P, Ba L J. Adam: a method for stochastic optimization[J]. [DB/OL].[2020-03-20]. https://arxiv.org/pdf/1412.6980v9.pdf.
[1] 徐凯旋, 李宪, 潘亚磊. 基于双向编码转换器和文本卷积神经网络的微博评论情感分类[J]. 复杂系统与复杂性科学, 2021, 18(2): 89-94.
[2] 钟丽君, 宾晟, 袁敏, 孙更新. 多功能复杂网络模型及其应用[J]. 复杂系统与复杂性科学, 2019, 16(2): 31-40.
[3] 傅杰, 邹艳丽, 谢蓉. 基于复杂网络理论的电力网络关键线路识别[J]. 复杂系统与复杂性科学, 2017, 14(3): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed