Abstract:Based on the rumor spreading characteristics of classic infection model (SIR) on real online social networks, this paper divides the OSN users into 6 different kinds of people, including the ignorants, the knowns, the believers, the spreaders, the temporary stiflers and the permanent stiflers. Taking into account the reality that people enhance their believing level when they contact with the same rumor constantly, this paper combines the positive effects of social reinforcement with the theory of complex networks to construct an improved rumor propagation model of online social network in the scale-free network environment considering tunable clustering. Numerical simulation results show that the rumor spreading range and ability will increase in the rumor first-believing probability, the degree of initial spreader nodes, the density of isolated node and the positive effects of social reinforcement; but on the contrary, it will be restrained by the increase of cluster coefficient. The improved rumor propagation model we proposed well fits the rumor spreading characteristics on real online social network and some theory references will be applied to manage and control Internet rumors.
朱张祥, 刘咏梅. 在线社交网络谣言传播的仿真研究——基于聚类系数可变的无标度网络环境[J]. 复杂系统与复杂性科学, 2016, 13(2): 74-82.
ZHU Zhangxiang, LIU Yongmei. Simulation Study of Propagation of Rumor in Online Social Network Based on Scale-Free Network with Tunable Clustering[J]. Complex Systems and Complexity Science, 2016, 13(2): 74-82.
[1] Peterson W A, Gist N P. Rumor and public opinion[J].American Journal of Sociology, 1951, 57(2): 159-167. [2] 张芳, 司光亚, 罗批. 谣言传播模型研究综述[J].复杂系统与复杂性科学, 2009, 6(4): 1-11. Zhang Fang, Si Guangya, Luo Pi. A survey for rumor propagation models[J].Complex Systems and Complexity Science, 2009, 6(4): 1-11. [3] Daley D J, Kendall D G. Epidemics and rumours[J].Nature, 1964, 204: 1118. [4] Maki D P, Thompson M. Mathematical Models and Applications: with Emphasis on the Social, Life, and Management Sciences[M].New Jersey: Prentice-Hall, Englewood Cliffs. 1973: 23-100. [5] Zhao L, Wang Q, Cheng J, et al. Rumor spreading model with consideration of forgetting mechanism: a case of online blogging livejournal[J].Physica A: Statistical Mechanics and its Applications, 2011, 390(13): 2619-2625. [6] 汪小帆, 李翔, 陈关荣. 复杂网络理论及其应用[M].北京: 清华大学出版社. 2006: 72-97. [7] Zanette D H. Critical behavior of propagation on small-world networks[J].Physical Review E, 2001, 64(5): 050901. [8] Zanette D H. Dynamics of rumor propagation on small-world networks[J].Physical Review E, 2002, 65(4): 041908. [9] Moreno Y, Nekovee M, Pacheco A F. Dynamics of rumor spreading in complex networks[J].Physical Review E, 2004, 69(6): 066130. [10] Nekovee M, Moreno Y, Bianconi G, et al. Theory of rumour spreading in complex social networks[J].Physica A: Statistical Mechanics and Its Applications, 2007, 374(1): 457-470. [11] Isham V, Harden S, Nekovee M. Stochastic epidemics and rumours on finite random networks[J].Physica A: Statistical Mechanics and Its Applications, 2010, 389(3): 561-576. [12] 王长春, 陈超. 基于复杂网络的谣言传播模型[J].系统工程理论与实践, 2012, 32(1): 203-210. Wang Changchun, Chen Chao. Rumor propagation on model based on complex network[J].Systems Engineering-Theory & Practice, 2012, 32(1): 203-210. [13] Zhao L, Wang J, Chen Y, et al. Sihr rumor spreading model in social networks[J].Physica A: Statistical Mechanics and Its Applications, 2012, 391(7): 2444-2453. [14] Zhao L, Qiu X, Wang X, et al. Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks[J].Physica A: Statistical Mechanics and Its Applications, 2013, 392(4): 987-994. [15] 顾亦然, 夏玲玲. 在线社交网络中谣言的传播与抑制[J].物理学报, 2012, 61(23): 238701. Gu Yiran, Xia Lingling. The propagation and inhibition of rumors in online social network[J].Acta Physica Sinica, 2012, 61(23): 238701. [16] 徐恪, 张赛, 陈昊, 等. 在线社会网络的测量与分析[J].计算机学报, 2014, 37(1): 165-188. Xu Ke, Zhang Sai, Chen Hao, et al. Measurement and analysis of online social networks[J].Chinese Journal of Computers, 2014, 37(1): 165-188. [17] Ghosh S, Ganguly N. Social Networking[M].Berlin: Springer International Publishing. 2014: 23-44. [18] Wang H, Deng L, Zhou M, et al. Weighted csr rumor spreading model in online social network[J].Journal of Information & Computational Science, 2012, 9(18): 5791-5798. [19] 胡海波, 徐玲, 王科, 等. 大型在线社会网络结构分析[J].上海交通大学学报, 2009, 43(4): 587-591. Hu Haibo, Xu Ling, Wang Ke, et al. Structural analysis of large online social network[J].Journal of Shanghai Jiaotong University, 2009, 43(4):587-591. [20] 胡海波, 王科, 徐玲, 等. 基于复杂网络理论的在线社会网络分析[J].复杂系统与复杂性科学, 2008, 5(2): 1-14. Hu Haibo, Wang Ke, Xu Ling, et al. Analysis of online social networks based on complex network theory[J].Complex Systems and Complexity Science, 2008, 5(2)L1-14. [21] 李勇军. 在线社交网络的拓扑特性分析[J].复杂系统与复杂性科学, 2012, 9(3): 22-37. Li Yongjun. Analysis on topological features of online social networks[J].Complex Systems and Complexity Science, 2012, 9(3): 22-37. [22] Vázquez A, Weigt M. Computational complexity arising from degree correlations in networks[J].Physical Review E, 2003, 67(2): 027101. [23] Barabási A-L, Albert R. Emergence of scaling in random networks[J].Science, 1999, 286: 509-512. [24] Holme P, Kim B J. Growing scale-free networks with tunable clustering[J].Physical Review E, 2002, 65(2):026107. [25] 王长春, 陈超, 董志强. 网络结构对谣言传播的影响[J].系统仿真学报, 2013, 25(1): 127-131. Wang Changchun, Chen Chao, Dong Zhiqiang. Effect of network structure on rumor propagation[J].Journal of Systems Simulation, 2013, 25(1): 127-131. [26] Sudbury A J. The proportion of the population never hearing a rumor[J].Journal of Applied Probability, 1985, 22(2): 443-446. [27] 钱颖, 张楠, 赵来军, 等. 微博舆情传播规律研究[J].情报学报, 2012, 31(12): 1299-1304. Qian Ying, Zhang Nan, Zhao Laijun, et al. The spread of public sentiment on micro-blogging under emergencies[J].Journal of the China Society for Scientific and Technical Information, 2012, 31(12): 1299-1304. [28] 王辉, 韩江洪, 邓林, 等. 基于移动社交网络的谣言传播动力学研究[J].物理学报, 2013, 62(11): 110505. Wang Hui, Han Jianghong, Deng Lin, et al. Dynamics of Rumor spreading in mobile social networks[J].Acta Physica Sinica, 2013, 62(11): 110505.