Please wait a minute...
文章检索
复杂系统与复杂性科学  2016, Vol. 13 Issue (2): 67-73    DOI: 10.13306/j.1672-3813.2016.02.008
  本期目录 | 过刊浏览 | 高级检索 |
社团结构网络环境下SIS病毒传播建模与分析
李婵婵a, 蒋国平b
南京邮电大学 a.计算机学院; b.自动化学院,南京 210003
Modeling and Analysis of Epidemic Spreading on Community Structure Network
LI Chanchana, JIANG Guopingb
a.School of Computer; b.School of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
全文: PDF(912 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 考虑许多现实网络具有社团结构,通过引入模块化系数,并在该系数合理范围控制下基于随机网络生成社团网络模型以模拟现实社会网络。通过平均场方法研究网络上的病毒传播动力学行为,推导传播阈值表达式,并用蒙特卡罗仿真加以验证。研究表明:社团结构的存在使得网络度分布发生变化,即社团结构越强,度分布越宽;同时,社团结构越强,病毒越易爆发;另外,传染率远大于阈值时,不同强度的社团结构网络的传播规模趋于一致,即网络结构对传播规模影响不大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李婵婵
蒋国平
关键词 复杂网络社团结构病毒传播平均场    
Abstract:Considering many real networks have the community structure property, in this paper, by introducing modularity coefficient and under its control, we build a community network model based on random network, which is used to simulate the real social networks. Then we investigate the epidemic spreading behaviors by mean field theory and get the mathematical expression of epidemic threshold, we also verify it by Monte Carlo simulations. It is found that the existing of community structure can change the network degree distribution, namely, the stronger community structure networks have wider degree distribution. And the stronger the community structure is, the smaller the virus spread critical value will be. Moreover, when the infection rate far away from the epidemic threshold, the transmission sizes of networks with different community structure intensity almost the same, that is, the change of modularity coefficient barely affects the epidemic prevalence.
Key wordscomplex network    community structure    epidemic spread    mean field
收稿日期: 2014-07-07      出版日期: 2025-02-25
ZTFLH:  N93  
  N94  
基金资助:国家自然科学基金(61374180,61373136,61304169);教育部人文社科规划基金(12YJAZH120);教育部高等学校博士点基金(20103223110003);江苏省“六大人才高峰”项目(RLD201212)
通讯作者: 蒋国平(1966-),男,江苏扬中人,博士,教授,主要研究方向为混沌系统与复杂网络。   
作者简介: 李婵婵(1989-),女,山西运城人,博士研究生,主要研究方向为复杂网络与信息安全。
引用本文:   
李婵婵, 蒋国平. 社团结构网络环境下SIS病毒传播建模与分析[J]. 复杂系统与复杂性科学, 2016, 13(2): 67-73.
LI Chanchan, JIANG Guoping. Modeling and Analysis of Epidemic Spreading on Community Structure Network[J]. Complex Systems and Complexity Science, 2016, 13(2): 67-73.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2016.02.008      或      https://fzkx.qdu.edu.cn/CN/Y2016/V13/I2/67
[1] Pastor-Satorras R, Vespignani A. Epidemic dynamics and endemic states in complex networks[J].Physical Review E, 2001, 63(6): 066117.
[2] 李翔, 刘宗华, 汪秉宏. 网络传播动力学[J].复杂系统与复杂性科学, 2010, 7(2-3): 33-37.
Li Xiang, Liu Zonghua, Wang Binghong. On spreading dynamics on networks[J].Complex Systems and Complexity Science, 2010, 7(23): 33-37.
[3] 张海峰, 王阳阳, 汪秉宏. 行为反应对复杂网络上传染病动力学的影响[J].复杂系统与复杂性科学, 2012, 9(3): 13-21.
Zhang Haifeng, Wang Yangyang, Wang Binghong. The impacts of behavioral responses on the spreading of infectious diseases on complex networks[J].Complex Systems and Complexity Science, 2012, 9(3): 13-21.
[4] Borge-Holthoefer J, Meloni S, Gonçalves B, et al. Emergence of influential spreaders in modified rumor models[J].Journal of Statistical Physics, 2013, 151: 383-393.
[5] 肖人彬, 张耀峰. 网络群体事件信息传播的演化博弈分析[J].复杂系统与复杂性科学, 2012, 9(1): 1-7.
Xiao Renbin, Zhang Yaofeng. Evolutionary game analysis of information spread in network mass events[J].Complex Systems and Complexity Science, 2012, 9(1): 1-7.
[6] Gong Y W, Song Y R, Jiang G P. Time-varying human mobility patterns with metapopulation epidemic dynamics[J].Physica A, 2013, 392(19): 4242-4251.
[7] Gong Y W, Song Y R, Jiang G P. Global dynamics of a novel multi-group model for computer worms[J].Chinese Physics B, 2013, 22(4): 040204.
[8] Girvan M, Newman M E J. Community structure in social and biological networks[J].PNAS, 2002, 99(12): 7821-7826.
[9] Borgatti S P, Mehra A, Brass D J, et al. Network analysis in the social sciences[J].Science, 2009, 323(5916): 892-895.
[10] Centola D. The spread of behavior in an online social network experiment[J].Science, 2010, 329(5996): 1194-1197.
[11] Onnela J P, Arbesman S, González M C, et al. Geographic constraints on social network groups[J].PLoS one, 2011, 6(4): e16939.
[12] Wu X Y, Liu Z H. How community structure influences epidemic spread in social networks[J].Physica A, 2008, 387: 623-630.
[13] Huang W, Li C G. Epidemic spreading in scale-free networks with community structure[J].Journal of Statistical Mechanics: Theory and Experiment, 2007, 2007(01): P01014.
[14] Zhang J P, Jin Z. Epidemic spreading on complex networks with community structure[J].Applied Mathematics and Computation, 2012, 219(6): 2829-2838.
[15] Zhang H L, Guan Z H, Li T, et al. A stochastic SIR epidemic on scale-free network with community structure[J].Physica A, 2013, 392(4): 974-981.
[16] Shu P P, Tang M, Gong K, et al. Effects of weak ties on epidemic predictability on community networks[J].Chaos, 2012, 22(4): 043124.
[17] Chu X W, Guan J H, Zhang Z Z, et al. Epidemic spreading in weighted scale-free networks with community structure[J].Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009(07): P07043.
[18] Min Y, Jin X G, Ge Y, et al. The role of community mixing styles in shaping epidemic behaviors in weighted networks[J].PLoS one, 2013, 8(2): e57100.
[19] Chen J C, Zhang H L, Guan Z H, et al. Epidemic spreading on networks with overlapping community structure[J].Physica A, 2012, 391(4): 1848-1854.
[20] Liu Z H, Hu B. Epidemic spreading in community networks[J].Europhysics Letters, 2005, 72: 315-321.
[21] Shao F, Jiang G P. Traffic driven epidemic spreading in homogeneous networks with community structure[J].Journal of Networks, 2012, 7(5): 850-855.
[22] Peng X L, Small M, Xu X J, et al. Temporal prediction of epidemic patterns in community networks[J].New Journal of Physics, 2013, 15(11): 113033.
[23] Li K Z, Fu X C, Small M, et al. Estimating the epidemic threshold on networks by deterministic connections[J].Chaos: an Interdisciplinary Journal of Nonlinear Science, 2014, 24(4): 043124.
[24] Colizza V, Vespignani A. Invasion threshold in heterogeneous metapopulation networks[J].Physical Review Letters, 2007, 99(14): 148701.
[25] Son S W, Bizhani G, Christensen C, et al. Percolation theory on interdependent networks based on epidemic spreading[J].Europhysics Letters, 2012, 97(1): 16006.
[26] Wang Y B, Xiao G X. Epidemics spreading in interconnected complex networks[J].Physics Letters A, 2012, 376(42): 2689-2696.
[27] Newman M E J, Girvan M. Finding and evaluating community structure in networks[J].Physical Review E, 2004, 69(2): 026113.
[1] 马忠渝, 程言欣, 陈李燊, 廖启嘉, 钱江海. 基于适应度有序准入策略的网络凝聚调控[J]. 复杂系统与复杂性科学, 2024, 21(4): 6-12.
[2] 吴旗韬, 李苑庭, 吴海玲, 杨昀昊, 武俊强. 基于关键节点积极效应模型的快递物流网络点集挖掘[J]. 复杂系统与复杂性科学, 2024, 21(4): 28-33.
[3] 林思宇, 文娟, 屈星, 肖乾康. 基于TOPSIS的配电网结构优化及关键节点线路识别[J]. 复杂系统与复杂性科学, 2024, 21(3): 46-54.
[4] 高天, 许小可. 基于社团结构的抑制校园新冠传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 9-16.
[5] 戴剑勇, 甘美艳, 张美荣, 毛佳志, 刘朝. 基于复杂网络的天然气管道网络风险传播研究[J]. 复杂系统与复杂性科学, 2024, 21(3): 69-76.
[6] 王淑良, 孙静雅, 卞嘉志, 张建华, 董琪琪, 李君婧. 基于博弈论的关联网络攻防博弈分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 22-29.
[7] 高峰. 复杂网络深度重叠结构的发现[J]. 复杂系统与复杂性科学, 2024, 21(2): 15-21.
[8] 孙威威, 张峥. 基于复杂网络的电动汽车创新扩散博弈研究[J]. 复杂系统与复杂性科学, 2024, 21(2): 45-51.
[9] 侯静宇, 宋运忠. 基于多链路连锁故障图的电网脆弱线路分析[J]. 复杂系统与复杂性科学, 2024, 21(2): 68-74.
[10] 刘建刚, 陈芦霞. 基于复杂网络的疫情冲击对上证行业影响分析[J]. 复杂系统与复杂性科学, 2024, 21(1): 43-50.
[11] 张铭娜, 肖婧, 许小可. 展示网络重叠社团结构的可视化布局算法[J]. 复杂系统与复杂性科学, 2023, 20(4): 10-17.
[12] 马亮, 金福才, 胡宸瀚. 中国铁路快捷货物运输网络复杂性分析[J]. 复杂系统与复杂性科学, 2023, 20(4): 26-32.
[13] 董昂, 吴亚丽, 任远光, 冯梦琦. 基于局部熵的级联故障模型初始负载定义方式[J]. 复杂系统与复杂性科学, 2023, 20(4): 18-25.
[14] 董志良, 贾妍婧, 安海岗. 产业部门间间接能源流动及依赖关系演化特征[J]. 复杂系统与复杂性科学, 2023, 20(4): 61-68.
[15] 徐越, 刘雪明. 基于三元闭包模体的关键节点识别方法[J]. 复杂系统与复杂性科学, 2023, 20(4): 33-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed