Please wait a minute...
文章检索
复杂系统与复杂性科学  2017, Vol. 14 Issue (4): 32-42    DOI: 10.13306/j.1672-3813.2017.04.003
  本期目录 | 过刊浏览 | 高级检索 |
复杂网络中观交通流动态限速控制策略研究
李树彬1, 傅白白2a, 孙涛3, 党文修1, 高歌2b
1.山东警察学院交通管理工程系,济南 250014;
2.山东建筑大学a.建筑城规学院,b.交通工程学院,济南 250101;
3.山东省公安厅交通管理局,济南 250031
Research on Complex Network Mesoscopic Traffic Flow with Dynamic Limit Speed Control Strategies
LI Shubin1, FU Baibai2a, SUN Tao3, DANG Wenxiu1, GAO Ge2b
1.Department Traffic Management Engineering, Shandong Police College, Jinan, 250014, China;
2.a.School of Architecture and Urban Planning, b.School of traffic engineering, Shandong Jianzhu University, Jinan 250101, China;
3.Traffic Management Bureau, Public Security Department of Shandong Province, Jinan 250031, China
全文: PDF(2161 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为研究大数据时代下的复杂性科学问题,利用当前新兴的复杂网络理论结合改进的交通流仿真模型,研究可变限速对动态交通的影响,进而分析了不同的网络结构下最优的可变限速控制策略。结果表明最优的可变限速控制策略可以优化网络的交通状态。结论有助于帮助交通管理部门提出合理的交通规划方案以及制定有效的交通管理及控制措施。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李树彬
傅白白
孙涛
党文修
高歌
关键词 复杂网络可变限速交通流仿真模型控制策略    
Abstract:Complexity science, as a new crossing discipline, has penetrated into every field of economy and society. The purpose of this paper is to study the complexity of science in the era of big data. Based on complex network theory combined with the improved traffic flow simulation model, this paper studies effect of VSL to dynamic traffic, and then analyzes the optimal control strategy of VSL in different network topology. The results show that the optimal variable speed limit control strategy can optimize the traffic state of the network. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help department of traffic management.
Key wordscomplex network    variable speed limit    traffic flow    simulation model    control strategy
收稿日期: 2017-03-08      出版日期: 2019-01-16
ZTFLH:  U491  
基金资助:国家自然科学基金(71471104、71371026、71571109);山东省高等学校科技计划项目(J17KA211);山东省公安厅科技专项(GATHT2015-236);济南市社会民生重大专项(201509005)
通讯作者: 傅白白(1961),女,山东济南人,博士,教授,主要研究方向为复杂性科学、交通规划与管理。   
作者简介: 李树彬(1977-),男,山东聊城人,博士,副教授,主要研究方向为智能交通系统、系统分析与集成。
引用本文:   
李树彬, 傅白白, 孙涛, 党文修, 高歌. 复杂网络中观交通流动态限速控制策略研究[J]. 复杂系统与复杂性科学, 2017, 14(4): 32-42.
LI Shubin, FU Baibai, SUN Tao, DANG Wenxiu, GAO Ge. Research on Complex Network Mesoscopic Traffic Flow with Dynamic Limit Speed Control Strategies. Complex Systems and Complexity Science, 2017, 14(4): 32-42.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2017.04.003      或      http://fzkx.qdu.edu.cn/CN/Y2017/V14/I4/32
[1]Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks [J]. Nature, 1998, 393(6684): 440442.
[2]Barabási A L, Albert R. Emergence of scaling in random networks [J]. Science, 1999, 286(5439): 509512.
[3]Cui D, Gao Z Y, Zhao X M. Cascades with coupled map lattices in preferential attachment community networks [J]. Chinese Physics B, 2008, 17(5): 17031708.
[4]Zhang Z, Fu Z Q, Yan G. Synchronization speed of identical oscillators on community networks [J]. Chinese Physics B, 2009, 18(6): 22092212.
[5]Cui D, Gao Z Y, Zheng J F. Properties of asymmetrically evolved community networks [J]. Chinese Physics B, 2009, 18(2): 516521.
[6]杜海峰,李树茁, Marcus W F, 等. 小世界网络与无标度网络的社区结构研究 [J]. 物理学报, 2007, 56(12): 68876892.
Du Haifeng, Li Shuzhuo, Marcus W F,et al. Community structure in small-world and scale-free networks [J]. Acta Physica Sinica, 2007, 56(12): 68876892.
[7]李季,汪秉宏,蒋品群, 等. 节点数加速增长的复杂网络生长模型 [J]. 物理学报, 2006, 55(8): 40514057.
Li J, Wang Binghong, Jiang Pinqun,et al. Growing complex network model with acceleratingly increasing number of nodes [J]. Acta Physica Sinica, 2006, 55(8): 40514057.
[8]赵明,汪秉宏,蒋品群, 等. 复杂网络上动力系统同步的研究进展 [J]. 物理学进展, 2005, 25(3): 273295.
Zhao Ming, Wang Binghong,Jiang Pinqun,et al. Recent advancement in research of synchronization of dynamical systems on complex networks [J]. Progress in physics, 2005, 25(3): 273295.
[9]罗群,吴薇,李丽香, 等. 节点含时滞的不确定复杂网络的自适应同步研究 [J]. 物理学报, 2008, 57(3): 15291534.
Luo Qun,Wu Wei,Li Lixiang,et al. Adaptive synchronization research on the uncertain complex networks with time-delay [J]. Acta Physica Sinica, 2008, 57(3): 15291534.
[10] Wu J J, Gao Z Y, Sun H J. Simulation of traffic congestion with SIR model [J]. Modern Physics Letters B, 2004, 18(30): 15371542.
[11] Wu J J, Gao Z Y, Sun H J. Complexity and efficiency of Beijing transit network [J]. International Journal of Modern Physics B, 2006, 20: 2129.
[12] Wu J J, Gao Z Y, Sun H J. Cascade and breakdown in scale-free net-works with community structure [J]. Physical Review E, 2006, 74(6): 066111.
[13] Gupta A K, Sharma S. Nonlinear analysis of traffic jams in an anisotropic continuum model [J]. Chinese Physics B, 2010, 19(11): 110503.
[14] Gupta A K, Sharma S. Analysis of the wave properties of a new two-lane continuum model with the coupling effect [J]. Chinese Physics B, 2012, 21(1): 015201.
[15] Peng G H, Cai X H, Cao B F, et al. A new lattice model of traffic flow with the consideration of the traffic interruption probability [J]. Physica A, 2012, 391(3): 656.
[16] 曾友志,张宁,刘利娟. 考虑司机扰动风险偏好异质的跟驰模型 [J]. 物理学报, 2014, 63(6): 378384.
Zeng Youzhi, Zhang Ning, Liu Lijuan. A new car-following model considering drivers’ heterogeneity of the disturbance risk appetite [J]. Acta Physica Sinica, 2014, 63(6): 378384.
[17] 敬明,邓卫,王昊, 等. 基于跟车行为的双车道交通流元胞自动机模型 [J], 物理学报, 2012, 61(24): 323331.
Jing Ming,Deng Wei, Wang Hao,et al. Two-Lane cellular automaton traffic model based on car following behavior [J]. Acta Physica Sinica, 2012, 61(24): 323331.
[18] Lakouari N, Bentaleb K, Ez-Zahraouy H, et al. Correlation velocities in heterogeneous bidirectional cellular automata traffic flow [J]. Physica A:Statistical Mechanics and its Applications, 2015, 439: 132141.
[19] Yang D, Qiu X P, Yu D,et al. A celluar automata model for car-truck heterogeneous traffic flow considering the car-trunk following combination effect [J]. Physica A: Statistical Mechanics and Its Applications, 2015, 424: 6272.
[20] 华雪东,王炜,王昊. 考虑驾驶心理的城市双车道交通流元胞自动机模型 [J]. 物理学报, 2011, 60(8): 084501084508.
Hua Xuedong, Wang Wei, Wang Hao. A two-lane cellular automaton traffic flow model with the influence of driving psychology [J]. Acta Physica Sinica, 2011, 60(8): 084501084508.
[21] 汪秉宏,文旭,许伯铭. 复杂网络 [M]. 上海: 上海科技教育出版社, 2006: 247261.
Wang Binghong H, Wang Wenxu, Xu Boming. Complex Neworks [M]. Shanghai: Shanghai Scientific and Technological Education Press, 2006: 247261.
[22] 华雪东,王炜,王昊. 考虑自适应巡航车辆影响的上匝道系统混合交通流模型 [J]. 物理学报, 2016, 65(8): 084503.
Hua Xuedong, Wang Wei, Wang Hao. A hybrid traffic flow model with considering the influence of adaptive cruise control vehicles and onramps [J]. Acta Physica Sinica, 2016, 65(8): 084503.
[23] 华雪东,王炜,王昊. 考虑车与车互联通讯技术的交通流跟驰模型 [J]. 物理学报, 2016, 65(1): 5263.
Hua Xuedong, Wang Wei, Wang Hao. A car-following model with the consideration of vehicle-to-vehicle communication technology [J]. Acta Physica Sinica, 2016, 65(1): 5263.
[24] 薛郁,董力耘,戴世强. 一种改进的一维元胞自动机交通流模型及减速概率的影响 [J]. 物理学报, 2001, 50(3): 445449.
Xue Yu, Dong Liyun, Dai Shiqiang. Model of traffic flow and the effect of deceleration probability [J]. Acta Physica Sinica, 2001, 50(3): 445449.
[25] 雷丽,薛郁,戴世强. 交通流的一维元胞自动机敏感驾驶模型 [J]. 物理学报, 2003, 52(9): 21212126.
Lei Li, Xue Yu, Dai Shiqiang. One-dimensional sensitive driving cellular automaton model for traffic flow [J]. Acta Physica Sinica, 2003, 52(9): 21212126.
[26] Fang Y, Chen J Z, Peng Z Y. The effect of moving bottlenecks on a two-lane traffic flow [J]. Chinese Physics B, 2013, 22(10): 108902.
[27] Zheng Y Z, Zheng P J,Ge H X. An improved car-following model with consideration of the lateral effect and its feedback control research [J]. Chinese Physics B, 2014, 23(2): 020503.
[28] Ling X, Hu M B, Jiang R, et al. Global dynamic routing for scale-free networks [J]. Physical Review E, 2010, 81(1): 016113.
[29] Tang T Q, Huang H J, Wong S C, et al. A new car-following model with consideration of the traffic interruption probability [J]. Chinese Physics B, 2009, 18(3): 09750983.
[30] 李树彬,吴建军,高自友, 等. 基于复杂网络的交通拥堵与传播动力学分析 [J]. 物理学报, 2011, 60(5): 050701.
Li Shubing, Wu Jianjun, Gao Ziyou, et al. The analysis of traffic congestion and dynamic propagation properties based on complex network [J]. Acta Physica Sinica, 2011, 60(5): 050701.
[31] Chang G, Park S Y, Paracha J. Intelligent transportation system field demonstration integration of variable speed limit control and travel time estimation for a recurrently congested highway [J]. Transportation Research Record: Journal of the Transportation Research Board, 2011, 2243: 5566.
[32] Chang G, Park S. Field evaluation of variable speed limit control for contending with recurrent highway congestion [R]. Maryland State Highway Research Report, 2010, MD09SP708B4B.
[33] 王薇,杨兆升,赵丁选. 有限阶段马尔可夫决策的可变限速控制模型 [J]. 交通运输工程学报, 2011, 11(5): 109114.
Wang Wei, Yang Zhaosheng, Zhao Ddingxuan. Control model of variable speed limit based on finite horizon Markov decision-making [J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 109114.
[34] Abde-aty M, Cunningham R J, Gayah V V, et al. Dynamic variable speed limit strategies for real-time crash risk reduction on freeways [J]. Transportation Research Record, 2008, 2078: 108116.
[35] 蒲云,胡路,蒋阳升, 等. 高速公路主线收费站可变限速控制 [J]. 交通运输工程学报, 2012, 12(5): 119126.
Pu Yun, Hu Lu,J iang Yangsheng, et al. Variable speed-limit control before expressway mainline toll station [J]. Journal of Traffic and Transportation Engineering, 2012, 12(5): 119126.
[36] 张晶晶,庞明宝,任沙沙. 基于元胞自动机模型的高速公路可变速度限制交通流特性分析 [J]. 物理学报, 2012, 61(24): 24450318.
Zhang Jingjing, Pang Mingbao, Ren Shasha. Characteristic analysis of traffic flow in variable speed limit section of freeway based on cellular automaton model [J]. Acta Physica Sinica, 2012, 61(24): 24450318.
[37] 李树彬. 城市交通系统运行状态评估及控制策略研究 [D]. 北京:北京交通大学, 2012.
Li Shubin. Research on the run state evaluation of urban transportation system and control strategies [D]. Beijing: Beijing Jiaotong University, 2012.
[38] 谢东繁 基于微观模型的城市道路交通流若干典型问题研究 [D]. 北京:北京交通大学, 2010.
Xie Dongfan. Analyzing of typical problems of urban road traffic flow based on microscopic models [D]. Beijing:Beijing Jiaotong University, 2010.
[39] 王涛. 基于格子流力学模型的交通流建模及仿真研究 [D]. 北京:北京交通大学, 2015.
Wang Tao. Research on traffic flow modeling and simulating based on the lattice hydrodynamic model [D]. Beijing:Beijing Jiaotong University, 2015.
[40] Xie D F, Gao Z Y, Zhao X M. The effect of ACC vehicles to mixed traffc flow consisting of manual and ACC vehicles [J]. Chinese Physics B, 2008, 17(12): 44404445.
[41] Jiang B,Claramunt C. Topological analysis of urban street networks [J]. Environment and Planning B, 2004, 31: 151162.
[42] Gao Z Y, Li K P, Li X G, et al. Scaling laws of the network traffic flow [J]. Physica A, 2007, 380: 577584.
[43] Wu J J, Gao Z Y,Sun H J. Urban transit system as a scale-free network [J]. Modern Physics Letters B, 2004, 18: 10431049.
[44] Erdö s P, Ré nyi A. Publications of the mathematical institute of the hungarian academy of science [J]. Graph Theory, 1960, 5(1): 1761.
[45] 吴建军. 城市交通拓扑结构复杂性研究 [D]. 北京:北京交通大学, 2008.
Wu Jianjun. Topological structure complexity of urban traffic research [D]. Beijing:Beijing Jiaotong University, 2008.
[1] 丁毓, 刘三阳, 陈静静, 白艺光. 基于复杂网络的差分进化算法研究[J]. 复杂系统与复杂性科学, 2018, 15(2): 1-9.
[2] 张正帅, 陈时军, 周晨, 赵瑞. 利用复杂网络技术分析地震活动性特征[J]. 复杂系统与复杂性科学, 2018, 15(2): 10-17.
[3] 吴宗柠, 吕俊宇, 蔡宏波, 樊瑛. 双曲空间下国际贸易网络建模与分析——以小麦国际贸易为例[J]. 复杂系统与复杂性科学, 2018, 15(1): 31-37.
[4] 应尚军, 纪小妹, 吴婷婷. 国际资本流动网络复杂性研究的总体框架[J]. 复杂系统与复杂性科学, 2018, 15(1): 38-44.
[5] 种鹏云, 尹惠. 蓄意攻击策略下危险品运输网络级联失效仿真[J]. 复杂系统与复杂性科学, 2018, 15(1): 45-55.
[6] 谭少林, 吕金虎. 复杂网络上的演化博弈动力学——一个计算视角的综述[J]. 复杂系统与复杂性科学, 2017, 14(4): 1-13.
[7] 李甍娜, 郭进利, 卞闻, 常宁戈, 肖潇, 陆睿敏. 网络视角下的唐诗[J]. 复杂系统与复杂性科学, 2017, 14(4): 66-71.
[8] 杨晓波, 陈楚湘, 王至婉. 基于节点相似性的LFM社团发现算法[J]. 复杂系统与复杂性科学, 2017, 14(3): 85-90.
[9] 傅杰, 邹艳丽, 谢蓉. 基于复杂网络理论的电力网络关键线路识别[J]. 复杂系统与复杂性科学, 2017, 14(3): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed