Please wait a minute...
文章检索
复杂系统与复杂性科学  2019, Vol. 16 Issue (4): 13-18    DOI: 10.13306/j.1672-3813.2019.04.002
  本期目录 | 过刊浏览 | 高级检索 |
双层网络上的社会传播
李小林, 许润杰, 娄洁, 许新建
上海大学数学系,上海 200444
Social Contagions on Duplex Networks
LI Xiaolin, XU Runjie, Lou Jie, XU Xinjian
Department of Mathematics, Shanghai University, Shanghai 200444, China
全文: PDF(1762 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 双层网络上的社会传播是当前复杂性研究的热点之一。然而已有研究相对简单,无论线下网络还是线上网络往往采用均匀分布,而经验分析表明线上网络大都是非均匀的。基于这一点,本文研究了线下均匀线上非均匀双层网络上的阈值模型,重点考察了两层网络之间的耦合关系对系统鲁棒性的影响。与完全不相关耦合相比,完全正相关耦合在低连通区域削弱了系统的鲁棒性而在高连通区域增强了系统的鲁棒性,完全负相关耦合则起着相反的作用。与均匀网络相比,非均匀网络上的传播受到耦合相关性的影响更大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李小林
许润杰
娄洁
许新建
关键词 双层网络社会传播阈值模型鲁棒性    
Abstract:The rising of online networks have provided a new ecosystem of individual interactions. Of particular interest are social contagions on duplex networks. Previous studies assume that each network is homogeneous, however, empirical analysis shows that nearly the online networks are heterogeneous. Motivated by this, we studied the threshold model on duplex networks with different online-offline coupling. Compared with uncorrelated coupling, the maximum positive coupling weakens systematic robustness for the sparse network, while enhances the robustness for the dense network. The maximum negative coupling, however, plays an opposite role. These effects are strengthened when the online network is heterogeneous.
Key wordsduplex network    social contagion    threshold model    robustness
收稿日期: 2019-07-13      出版日期: 2020-01-21
ZTFLH:  O231.5  
基金资助:国家自然科学基金(11771277);上海市自然科学基金(17ZR1445100)
通讯作者: 许新建(1978-),男,江苏连云港人,博士,教授,主要研究方向为复杂网络。   
作者简介: 李小林(1979-),女,山东烟台人,博士,讲师,主要研究方向为多主体系统。
引用本文:   
李小林, 许润杰, 娄洁, 许新建. 双层网络上的社会传播[J]. 复杂系统与复杂性科学, 2019, 16(4): 13-18.
LI Xiaolin, XU Runjie, Lou Jie, XU Xinjian. Social Contagions on Duplex Networks. Complex Systems and Complexity Science, 2019, 16(4): 13-18.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2019.04.002      或      http://fzkx.qdu.edu.cn/CN/Y2019/V16/I4/13
[1]Jia P, Tabatabaei A M, Friedkin N E, et al. Opinion dynamics and the evolution of social power in influence networks[J]. SIAM Review, 2015, 57: 367-397.
[2]Porter M A, Gleeson J P. Dynamical Systems on Networks: a Tutorial [M]. Springer, 2016.
[3]李翔, 刘宗华, 汪秉宏. 网络传播动力学[J]. 复杂系统与复杂性科学, 2010, 7(2/3): 33-37.
Li Xiang, Liu Zonghua, Wang Binghong. On spredding dynamics on networks[J]. Complex Systems and Complexity Science, 2010, 7(2/3): 33-37.
[4]Schelling T C. Hockey helmets, concealed weapons, and daylight saving[J]. Journal of Conflict Resolution, 1973, 17: 381-428.
[5]Granovetter M. Threshold models of collective behavior[J]. American Journal of Sociology, 1978, 83: 1420-1443.
[6]Morris S. Contagion[J]. The Review of Economic Studies, 2000, 67: 57-78.
[7]Watts D J. A simple model of global cascades on complex networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99: 5766-5771.
[8]Gleeson J P. Cascades on correlated and modular random networks[J]. Physical Review E, 2008, 77: 046117.
[9]Coupechoux E, Lelarge M. How clustering affects epidemics in random networks[J]. Advances in Applied Probability, 2014, 46: 985-1008.
[10] Backlund V P, Saramäki J, Pan R K. Effects of temporal correlations on cascades[J]. Physical Review E, 2014, 89: 062815.
[11] Xu X J, Li J Y, Fu X, et al. Impact of directionality and correlation on contagion[J]. Scientific Reports, 2018, 8: 4814.
[12] McCullen N, Rucklidge A, Bale C, et al. Multiparameter models of innovation diffusion on complex networks[J]. SIAM Journal on Applied Dynamical Systems, 2013, 12: 515-532.
[13] Melnik S, Ward J A, Gleeson J P, et al. Multi-stage complex contagions[J]. Chaos, 2013, 23: 013124.
[14] Wang W, Tang M, Zhang H F, et al. Dynamics of social contagions with memory of nonredundant information[J]. Physical Review E, 2015, 92: 012820.
[15] Ruan Z, Iñguez G, Karsai M, et al. Kinetics of social contagion[J]. Physical Review Letters, 2015, 115: 218702.
[16] Brummitt C D, Lee K M, Goh K I. Multiplexity-facilitated cascades in networks[J]. Physical Review E, 2012, 85: 045102(R).
[17] Yağan O, Gligor V. Analysis of complex contagions in random multiplex networks[J]. Physical Review E, 2012, 86: 036103.
[18] Li Z, Yan F, Jiang Y. Cross-layers cascade in multiplex networks[J]. Autonomous Agents and Multi-Agent Systems, 2015, 29: 1186-1215.
[19] Czaplicka A, Toral R, Miguel M S. Competition of simple and complex adoption on interdependent networks[J]. Physical Review E, 2016, 94: 062301.
[20] Zhuang Y, Arenas A, Yaan O. Clustering determines the dynamics of complex contagions in multiplex networks[J]. Physical Review E, 2017, 95: 012312.
[21] Gleeson J P, Cahalane D J. Seed size strongly affects cascades on random networks[J]. Physical Review E, 2007, 75: 056103.
[22] Erdös P, Rényi A. On random graphs[J]. Publicationes Mathematicae Debrecen, 1959, 6: 290-297.
[23] 许小可, 胡海波, 张伦, 等. 社交网络上的计算传播学[M]. 北京: 高等教育出版社, 2015.
[24] Catanzaro M, Boguñá M, Pastor-Satorras R. Generation of uncorrelated random scale-free networks[J]. Physical Review E, 2005, 71: 027103.
[25] Lee K M, Kim J Y, Cho W K, et al. Correlated multiplexity and connectivity of multiplex random networks[J]. New Journal of Physics, 2012, 14: 033027.
[26] Lazer D, Pentland A, Adamic L, et al. Computational social science[J]. Science, 2009, 323: 721-723.
[1] 肖琴, 罗帆. 基于复杂网络的两栖水上飞机起降安全风险演化[J]. 复杂系统与复杂性科学, 2019, 16(2): 19-30.
[2] 宋甲秀, 杨晓翠, 张曦煌. 融合邻域鲁棒性及度均衡性的集体影响中心性[J]. 复杂系统与复杂性科学, 2019, 16(1): 26-35.
[3] 吴凌杰, 邹艳丽, 王瑞瑞, 姚飞, 汪洋. 电力信息相互依存网络与单层电网的级联故障比较[J]. 复杂系统与复杂性科学, 2018, 15(3): 11-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed