Please wait a minute...
文章检索
复杂系统与复杂性科学  2019, Vol. 16 Issue (4): 19-30    DOI: 10.13306/j.1672-3813.2019.04.003
  本期目录 | 过刊浏览 | 高级检索 |
含时滞多智能体系统的边动态二分一致性
李英桢, 纪志坚, 刘帅, 杨仪龙
青岛大学自动化学院,山东 青岛 266071
Bipartite Consensus of Dynamic-Edge Multi-Agent Systems with Time-Delay
LI Yingzhen, JI Zhijian, LIU Shuai, YANG Yilong
School of automation, Qingdao university, Qingdao 266071, China
全文: PDF(1723 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对一阶和二阶多智能体系统的二分一致性问题,基于边动态设计一致性协议,使系统能实现边动态二分一致性。借助线图这一工具和规范变换的方法,得到有向图下一阶和二阶无时滞多智能体系统实现边动态二分一致性的充分条件。进一步在协议中加入不均匀通讯时滞,利用Lyapunov渐近稳定性定理,得到有向图下一阶和二阶含时滞多智能体系统实现边动态二分一致性的充分条件。最后利用Matlab进行实例仿真,验证了结论的合理性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李英桢
纪志坚
刘帅
杨仪龙
关键词 边动态多智能体系统不均匀时滞二分一致性    
Abstract:For the bipartite consensus problems of first-order and second-order multi-agent systems, we design a consensus protocol based on the edge dynamic to make the system achieve edge dynamic bipartite consensus. With the help of line graph and equivalent transformation, the sufficient conditions for achieving edge dynamic bipartite consensus of first-order and second-order multi-agent systems under directed graph without time-delay are obtained. Furthermore, non-uniform communication time-delay is added to the protocol. Lyapunov asymptotic stability theorem is used to obtain the sufficient conditions that first-order and second-order multi-agent systems under directed graph with time-delay that reach edge dynamic bipartite consensus. Finally, using Matlab to simulate the example, the rationality of the conclusion is verified.
Key wordsedge-dynamic    multi-agent system    non-uniform communication time-delay    bipartite consensus
收稿日期: 2019-07-05      出版日期: 2020-01-21
ZTFLH:  N35  
  F20  
基金资助:国家自然科学基金(61873136,61603288,61374062);山东省杰出青年科学基金(JQ201419)
通讯作者: 纪志坚(1973-),男,山东青岛人,博士,教授,主要研究方向为多智能体网络系统,复杂网络的分析与控制等。   
作者简介: 李英桢(1995-),男,山东威海人,硕士研究生,主要研究方向为多智能体系统。
引用本文:   
李英桢, 纪志坚, 刘帅, 杨仪龙. 含时滞多智能体系统的边动态二分一致性[J]. 复杂系统与复杂性科学, 2019, 16(4): 19-30.
LI Yingzhen, JI Zhijian, LIU Shuai, YANG Yilong. Bipartite Consensus of Dynamic-Edge Multi-Agent Systems with Time-Delay. Complex Systems and Complexity Science, 2019, 16(4): 19-30.
链接本文:  
http://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2019.04.003      或      http://fzkx.qdu.edu.cn/CN/Y2019/V16/I4/19
[1]Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9):1520-1533.
[2]Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies[J]. IEEE Transactions on Automatic Control, 2005, 50(5):665-671.
[3]Ermon S, Schenato L, Zampieri S. Trust estimation in autonomic networks: a statistical mechanics approach[C]. IEEE Conference on Decision Control. IEEE, 2009:4790-4795.
[4]Altafini C. Consensus problems on networks with antagonistic interactions[J]. IEEE Transactions on Automatic Control, 2013, 58(4):935-946.
[5]Zhang H, Chen J. Bipartite consensus of general linear multi-agent systems[C]//American Control Conference. IEEE, 2014 :808-812.
[6]Wang X, Wang X, Su H. Consensus of edge dynamics on directed multi-agent systems[C]//Control Conference. IEEE, 2014:1372-1376.
[7]Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9):1520-1533.
[8]Du M, Meng D. Consensus of multi-agent systems with antagonistic interactions and communication delays[C]//Control Conference. IEEE, 2014:1075-1080.
[9]Li P, Liu Y, Zhao Y, et al. Consensus control for second-order multi-agent with time-delay on antagonistic networks[C]//Control Conference. IEEE, 2016:8066-8071.
[10] Tian L, Ji Z, Hou T. Bipartite consensus for a class of double-order multi-agent systems with time-varying delays on antagonistic interactions[C]//Chinese Automation Congress. IEEE, 2018:184-188.
[11] Jiang Y, Zhang H W, Chen J. Sign-consensus of linear multi-agent systems over signed directed graphs[J].IEEE Transactions on Industrial Electronics,2017,64(6):5075-5083.
[12] Tian Y P, Liu C L. Consensus of multi-agent systems with diverse input and communication delays[J]. IEEE Transactions on Automatic Control, 2008, 53(9):2122-2128.
[13] Lee D, Spong M W. Agreement with non-uniform information delays[C]//American Control Conference. IEEE, 2006:756-761.
[14] Ni W, Cheng D. Leader-following Consensus of multi-agent systems under fixed and switching topologies[J]. Systems Control Letters, 2010, 59(3-4):209-217.
[15] Hong Y, Gao L, Cheng D, et al. Lyapunov-based approach to multiagent systems with switching jointly connected interconnection[J]. IEEE Transactions on Automatic Control, 2007, 52(5):0-948.
[16] 俞立. 鲁棒控制: 线性矩阵不等式处理方法[M]. 北京:清华大学出版社, 2002.
[17] Horn R A, Johnson C R. Matrix analysis[M]. Cambridge: Cambridge University Press, 1985.
[18] 吴敏. 时滞系统鲁棒控制[M]. 北京:科学出版社, 2008.
[1] 王潇, 纪志坚. 基于MAS的无人机新型编队算法[J]. 复杂系统与复杂性科学, 2019, 16(2): 60-68.
[2] 仉伟, 纪志坚, 渠继军. 基于领导者对称的多智能体系统可控性研究[J]. 复杂系统与复杂性科学, 2019, 16(2): 52-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed