Abstract:In order to explore the usage behavior and cause of emojis on social media, we analyzed the use of emojis in 1 800 958 microblogs under the topic of "Kunshan Case" on Sina Weibo. First, we analysis the frequency of emoji to study the phenomenon of repeated usage of emoji in the group, and then we classify popular emojis and micro-blog texts, we analyze the diversity of emoji usage of individual users. The result shows that: There are a lot of emojis in Weibo and the frequency of emojis is long-tailed and follow Zipf's Law; The evolution of popular emojis can reflect the public opinion of the event; Individual users are used to using 2~3 same emojis or different emojis with similar emotions. The emojis used by users are often related to the topics they express and are influenced by the psychology of herds, and the phenomenon of co-occurrence emojis is usually to strengthen the emotions expressed.
刘飞, 王浩, 许小可. 社交媒体中表情符号的使用行为及成因分析[J]. 复杂系统与复杂性科学, 2020, 17(3): 70-77.
LIU Fei, WANG Hao, XU Xiaoke. Usage Behavior and Cause of Emoji in Social Media. Complex Systems and Complexity Science, 2020, 17(3): 70-77.
[1] Pohl H, Domin C, Rohs M. Beyond just text: semantic emoji similarity modeling to support expressive communication[J]. ACM Transactions on Computer-Human Interaction, 2017, 24(1):1-42. [2] Riordan M A . The communicative role of non-face emojis: affect and disambiguation[J]. Computers in Human Behavior, 2017, 76:75-86. [3] Tauch C, Kanjo E. The roles of emojis in mobile phone notifications[C] // Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2016:1560-1565. [4] Illendula A, Yedulla M R. Learning emoji embeddings using emoji co-occurrence network Graph[C]. CoRR, 2018, arXiv: 1806.07785v1. [5] Lu X , Ai W , Liu X , et al. Learning from the ubiquitous language: an empirical analysis of emoji usage of smartphone users[C] // Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2016:770-780. [6] Oleszkiewicz A , Karwowski M , Pisanski K , et al. Who uses emoticons? Data from 86 702 Facebook users[J]. Personality and Individual Differences, 2017,119:289-295. [7] Miller H, Thebault-Spieker J, Chang S, et al. "Blissfully happy" or "ready to fight": varying interpretations of emoji[C] // International AAAI Conference on Web and Social Media, 2016:259-268. [8] Cho H, Ishida T. Exploring Cultural Differences in Pictogram Interpretations[M] ∥Ishida T. The Language Grid. Cognitive Technologies. Springer Berlin Heidelberg, 2011:133-148. [9] Wall H J, Kaye L K, Malone S A, et al. An exploration of psychological factors on emoticon usage and implications for judgement accuracy[J]. Computers in Human Behavior, 2016, 62:70-78. [10] Rodrigues D , Lopes D , Prada M , et al. A frown emoji can be worth a thousand words: Perceptions of emoji use in text messages exchanged between romantic partners[J]. Telematics and Informatics, 2017, 34(8):1532-1543. [11] Joanna C. D, Devshikha B, Patrick R. L, et al. What Sunshine is to Flowers: a Literature Review on the Use of Emoticons to Support Online Learning[M]. San Diego, CA, US: Elsevier, 2016:163-182. [12] Skiba D J. Face with tears of joy is word of the year: are emoji a sign of things to come in health care?[J]. Nursing Education Perspectives, 2016, 37(1):56-57. [13] Esposito G, Hernandez P, Van Bavel R, et al. Nudging to prevent the purchase of incompatible digital products online: An experimental study.[J]. Plos One, 2017, 12(3):e0173333. [14] Manganari E E, Dimara E. Enhancing the impact of online hotel reviews through the use of emoticons[J]. Behaviour & Information Technology, 2017, 36(7):674-686. [15] 刘伟朋, 陈雁翔, 孙晓. 基于表情符号的中文微博多维情感分类的研究[J]. 合肥工业大学学报(自然科学版), 2014, 37(7):803-807. Liu Weipeng, Chen Yanxiang, Sun Xiao. Multidimensional sentiment classification method of Chinese micro-blog based on the emotion[J]. Journal of Hefei University of Technology(Nature Science), 2014, 37(7):803-807. [16] 谢丽星, 周明, 孙茂松. 基于层次结构的多策略中文微博情感分析和特征抽取[J]. 中文信息学报, 2012, 26(1):73-84. Xie Lixing, Zhou Ming, Sun Maosong. Hierarchical structure based hybrid approach to sentiment analysis of Chinese micro blog and its feature extraction[J]. Journal of Chinese Information Processing, 2012, 26(1):73-84. [17] Xin M J, Wu H X, Li W M, et al. A public opinion classification algorithm based on micro-blog text sentiment intensity: Design and implementation[J]. International Journal of Computer Network & Information Security, 2011, 3(3):48-54. [18] 徐琳宏, 林鸿飞, 潘宇,等. 情感词汇本体的构造[J]. 情报学报, 2008, 27(2):180-185. Xu Linhong, Lin Hongfei, Pan Yu, et al. Constructing the affective lexicon ontology[J]. Journal of The China Society for Scientific and Technical Information, 2008, 27(2):180-185. [19] 李峻. 态势语言地位论[J]. 求索, 2001,(2):101-104. Li Jun. Status theory of posture language[J]. Seeker, 2001,(2):101-104. [20] 张美静. 人际传播的符号回归——网络表情符号emoji在社交媒体爆红的因素分析[J]. 新闻爱好者, 2015, (12):47-51. Zhang Meijing. Symbolic regression of interpersonal communication—Analysis of the factors of emoji's popularity on social media[J]. Journalism Lover, 2015, (12):47-51.