Please wait a minute...
文章检索
复杂系统与复杂性科学  2023, Vol. 20 Issue (2): 68-73    DOI: 10.13306/j.1672-3813.2023.02.009
  本期目录 | 过刊浏览 | 高级检索 |
联合退相位噪声下量子囚徒困境纳什均衡分析
马思佳, 张舒宁, 王奕涵, 张新立
辽宁师范大学数学学院,辽宁 大连 116029
Analysis of Nash Equilibrium of Quantum Prisoner's Dilemma with Collective-dephasing Noise Channel
MA Sijia, ZHANG Shuning, WANG Yihan, ZHANG Xinli
School of Mathematics, Liaoning Normal University, Dalian 116029, China
全文: PDF(898 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为讨论量子囚徒困境模型在联合退相位噪声信道影响下纳什均衡策略情况,将联合退相位噪声引入到量子博弈中,通过MW量子化方案对囚徒困境博弈模型进行量子化,建立了联合退相位噪声信道下的量子囚徒困境博弈模型。通过讨论发现,在最大纠缠的条件下,参与者的收益关于噪声参数呈现出周期性的变化,且在同一周期内,随着噪声参数的增长,量子囚徒困境在不同的噪声区间出现了存在唯一纯量子纳什均衡解、两个纯量子纳什均衡解和没有纯量子的纳什均衡解的情况,在没有纯量子均衡解的两个噪声区间中,参与者会陷入类似于石头剪刀布的循环之中。说明在联合退相位噪声信道影响下,当噪声参数属于特定噪声区间时,参与者可以达成纳什均衡。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马思佳
张舒宁
王奕涵
张新立
关键词 量子博弈论联合退相位噪声囚徒困境纳什均衡    
Abstract:To discuss the Nash equilibrium strategy of the quantum prisoner's dilemma model under the influence of collective-dephasing noise channel, will collective-dephasing noise is introduced into the quantum game back, by MW quantization scheme to quantization of the prisoner's dilemma game, and a prisoner’s dilemma game under the effect of collective-dephasing noise is constructed. It is found that under the condition of the maximally entangle, each player’s payoff function shows periodicity about the parameter of the noise. And in the same period, along with the increase of the noise parameter, there is the unique pure quantum Nash equilibrium, two different pure quantum Nash equilibriums, and no pure quantum Nash equilibrium in different intervals. In the two noise intervals without a pure quantum Nash equilibrium, players were caught in a rock-paper-scissors loop. It shows that under the influence of collective-dephasing noise channel, players can reach Nash equilibrium when the noise parameters are in a specific interval.
Key wordsquantum game theory    collective-dephasing noise channel    Prisoner's dilemma    Nash equilibrium
收稿日期: 2021-10-24      出版日期: 2023-07-21
ZTFLH:  O413  
  O225  
基金资助:教育部人文社科规划项目(21YJA630116)
通讯作者: 张新立(1970-),男,山东莘县人,博士,教授,主要研究方向为量子博弈及应用。   
作者简介: 马思佳(1997-),女,辽宁锦州人,硕士研究生,主要研究方向为量子博弈及应用。
引用本文:   
马思佳, 张舒宁, 王奕涵, 张新立. 联合退相位噪声下量子囚徒困境纳什均衡分析[J]. 复杂系统与复杂性科学, 2023, 20(2): 68-73.
MA Sijia, ZHANG Shuning, WANG Yihan, ZHANG Xinli. Analysis of Nash Equilibrium of Quantum Prisoner's Dilemma with Collective-dephasing Noise Channel. Complex Systems and Complexity Science, 2023, 20(2): 68-73.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2023.02.009      或      https://fzkx.qdu.edu.cn/CN/Y2023/V20/I2/68
[1] MEYER D A. Quantum strategies[J]. Physical Review Letters, 1999,82(5):1052-1055.
[2] EISERT J, WILKENS M, LEWENSTEIN M. Quantum games and quantum strategies[J]. Physical Review Letters, 1998, 83(15): 3077-3080.
[3] MARINATTO L, WEBER T. Which kind of two-particle states can be teleported through a three-particle quantum channel[J]. Foundations of Physics Letters, 2000, 13(2):119-132.
[4] CHEN L K, ANG H, KIANG D, et al. Quantum prisoner dilemma under decoherence[J]. Physics Letters A, 2003, 316(5): 317-323.
[5] RAMZAN M, KHAN M K. Noise effects in a three-player prisoner's dilemma quantum game[J]. Journal of Physics A Mathematical and Theoretical, 2009, 41(43):1-11.
[6] ZHANG M H, LI H F, PENG J Y, et al. Fault-tolerant semiquantum key distribution over a collective-dephasing noise channel[J]. International Journal of Theoretical Physics, 2017, 56(8):2659-2670.
[7] VENKATESH B P, JUAN M L, ROMERO-ISART O. Cooperative effects in closely packed quantum emitters with collective dephasing[J]. Phys Rev Lett, 2018, 120(3): 1-6.
[8] WU G T, ZHOU N R, GONG L H, et al. Quantum dialogue protocols with identification over collection noisy channel without information leakage[J]. Acta Physica Sinica, 2014,63(6):50-57.
[9] Ye T Y. Robust quantum dialogue based on the entanglement swapping between any two logical bell states and the shared auxiliary logical bell state[J]. Quantum Information Processing, 2015, 14(4):1469-1486.
[10] YANG C W, HWANG T. Fault tolerant quantum key distributions using entanglement swapping of GHZ states over collective-noise channels[J]. Quantum Information Processing, 2013, 12(10):3207-3222.
[1] 国俊豪, 纪志坚. 基于NE结果的多智能体系统模型及其能控性[J]. 复杂系统与复杂性科学, 2021, 18(4): 50-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed