Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (1): 58-65    DOI: 10.13306/j.1672-3813.2024.01.008
  复杂网络 本期目录 | 过刊浏览 | 高级检索 |
基于组织-技术依存网络的技术融合机理
刘晓燕, 庞雅如, 谢桂生
北京工业大学经济与管理学院,北京 100124
Technology Convergence Mechanism Based on Organization-Tech Dependency Network
LIU Xiaoyan, PANG Yaru, XIE Guisheng
College of Economics andManagement, Beijing University of Technology, Beijing 100124, China
全文: PDF(1520 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 技术融合能够显著提高企业的创新能力,对技术融合机理的深入探索有助于选择合适的创新伙伴和融合技术。构建依存型网络分析模型,探究技术特征和技术依附的组织特征与技术融合的关系,并对人工智能产业进行实证研究。研究表明:吸收能力强或扩散能力强的技术容易吸收或流向其他技术;技术成熟度高、技术邻近性强的两种技术容易发生双向流动;被多个组织拥有的共性技术不容易吸收其他技术,但容易流向其他技术,单个组织内拥有的技术间容易发生双向流动。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晓燕
庞雅如
谢桂生
关键词 技术融合组织-技术依存网络社会选择模型人工智能产业    
Abstract:Technology convergence can significantly improve the innovation ability of enterprises. In-depth exploration of technology convergence mechanism is helpful to select suitable innovation partners and integrated technologies. This paper constructs a dependent network analysis model, explores the relationship between technical characteristics and organizational characteristics of technical attachment and technical convergence, and makes an empirical study on artificial intelligence industry. The research shows that, the technology with strong absorption or diffusion ability is easy to absorb or flow to other technologies; Two technologies with high technology maturity and strong technology proximity are prone to two-way flow. Common technologies owned by multiple organizations are not easy to absorb other technologies, but easy to flow to other technologies; The technology owned by a single organization is prone to two-way flow.
Key wordstechnology convergence    organization-technology dependency network    social selection models    artificial intelligence industry
收稿日期: 2022-06-17      出版日期: 2024-04-26
ZTFLH:  G315  
  F273.1  
基金资助:国家自然科学基金青年基金(72304025);国家社会科学后期资助项目(21FGLB042);国家自然科学基金面上项目(72104015)
作者简介: 刘晓燕(1974-),女,河北唐山人,博士,副教授,主要研究方向为组织理论与战略管理。
引用本文:   
刘晓燕, 庞雅如, 谢桂生. 基于组织-技术依存网络的技术融合机理[J]. 复杂系统与复杂性科学, 2024, 21(1): 58-65.
LIU Xiaoyan, PANG Yaru, XIE Guisheng. Technology Convergence Mechanism Based on Organization-Tech Dependency Network[J]. Complex Systems and Complexity Science, 2024, 21(1): 58-65.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.01.008      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I1/58
[1] 孙笑明,陈毅刚,王雅兰,等.国家主导技术创新组织模式研究——技术创新选择视角[J].科技进步与对策,2021,38(5):19-28.
SUN X M, CHEN Y G, WANG Y L, et al. Research on organizational model of national leading technology innovation: the perspective of technological innovation selection[J]. Science & Technology Progress and Policy, 2021,38(5):19-28.
[2] 朱巍,陈慧慧,田思媛,等.人工智能:从科学梦到新蓝海——人工智能产业发展分析及对策[J].科技进步与对策,2016,33(21):66-70.
ZHU W, CHEN H H, TIAN S Y, et al. Artificial intelligence: new blue ocean from a scientific dream-analysis and countermeasures of the development situation of Al industry[J]. Science & Technology Progress and Policy, 2016,33(21):66-70.
[3] JEONG S, LEE S. What drives technology convergence? exploring the influence of technological and resource allocation contexts[J]. Journal of Engineering and Technology Management, 2015, 36(5):78-96.
[4] KIM D G, CHOI S O. Impact of construction IT technology convergence innovation on business performance[J]. Sustainability, 2018, 10(11): 3972-3988.
[5] LEE C, KOGLER D F, LEE D. Capturing information on technology convergence, international collaboration, and knowledge flow from patent documents: a case of information and communication technology[J]. Information Processing & Management, 2019, 56(4): 1576-1591.
[6] CAVIGGIOLI F. Technology fusion: identification and analysis of the drivers of technology convergence using patent data[J]. Technovation, 2016, 55(2): 22-32.
[7] 周源,董放,刘宇飞.融合新兴领域知识融合过程研究——以生物信息领域为例[J].图书情报工作,2019,63(8):127-134.
ZHOU Y, DONG F, LIU Y F. Research on the pocess of knowledge fusion in emerging fields: a case study of bioinformatics[J]. Library and Information Service, 2019,63(8):127-134.
[8] 涂振洲,顾新.基于知识流动的产学研协同创新过程研究[J].科学学研究,2013,31(9):1381-1390.
TU Z Z, GU X. Study on process of industry-university-research institute collaborative innovation based on knowledge flow[J]. Studies in Science of Science, 2013,31(9):1381-1390.
[9] 张慧颖,孙亚平.技术融合角度的京津冀智能制造协同创新研究[J].天津大学学报(社会科学版),2020,22(3):235-245.
ZHANG H Y, SUN Y P. Research on collaborative innovation of Beijing-Tianjin-Hebei intelligent manufacturing from the perspective of technology integration[J]. Journal of Tianjin University(Social Sciences), 2020,22(3):235-245.
[10] 毛荐其, 李新秀, 刘娜. 技术会聚对创新绩效的作用机制研究[J]. 科技进步与对策, 2018, 35(20):15-20.
MAO J Q, LI X X, LIU N. The effect mechanism of technological convergence on innovation performance[J]. Science & Technology Progress and Policy, 2018, 35(20):15-20.
[11] LAZZERETTI L, CAPONE F. How proximity matters in innovation networks dynamics along the cluster evolution. A study of the high technology applied to cultural goods[J]. Journal of Business Research, 2016, 69(12): 5855-5865.
[12] 李丫丫,赵玉林.基于专利的技术融合分析方法及其应用[J].科学学研究,2016,34(2):203-211.
LI Y Y, ZHAO Y L. Method and application of technological convergence analysis base on patents[J]. Studies in Science of Science, 2016,34(2):203-211.
[13] 王晓光. 科学知识网络的形成与演化(Ⅱ):共词网络可视化与增长动力学[J]. 情报学报, 2010, 29(2):314-322.
WANG X G. Formation and evolution of science knowledge network(Ⅱ):co-word network visualization and growth dynamics[J]. Journal of the China Society for Scientific and Technical Information, 2010, 29(2):314-322.
[14] 王晓红,张宝生.知识网络结构特性对知识流动作用分析[J].价值工程,2010,29(2):11-13.
WANG X H, ZHANG B SH. Analysis of the role of knowledge network's structure characteristics for knowledge flows[J]. Value Engineering, 2010,29(2):11-13.
[15] 马费成, 刘向. 知识网络的演化(Ⅲ):连接机制[J]. 情报学报, 2011, 30(10):1015-1021.
MA F C, LIU X. Evolution of knowledge networks( III): attachment mechanism[J]. Journal of the China Society for Scientific and Technical Information, 2011, 30(10):1015-1021.
[16] 汤文仙. 技术融合的理论内涵研究[J]. 科学管理研究, 2006, 24(4):31-34.
TANG W X. Exploration on theory of technology convergence[J]. Scientific Management Research, 2006, 24(4):31-34.
[17] 薛红志.新技术企业的技术专利与外部资源整合[J].科学学研究,2010,28(1):10-16.
XUE H Z. The impact of new technological ventures' patents on acquisition of outside resources[J]. Studies in Science of Science, 2010,28(1):10-16.
[18] 苗红,赵润博,黄鲁成,等.基于LMDI分解模型的技术融合驱动因素研究[J].科技进步与对策,2019,36(3):11-18.
MIAO H, ZHAO R B, HUANG L C, et al. Analysis of the drivers of technology convergence based on LMDI decomposition model[J]. Science & Technology Progress and Policy, 2019,36(3):11-18.
[19] 杨凤鲜,李平.企业技术融合创新模式选择研究[J].中国科技论坛,2015(1):78-83.
ZHAO F X, LI P. The choice of technology fusion modes based on technology development strategy[J]. Forum on Science and Technology in China, 2015(1):78-83.
[20] 史烽,高阳,陈石斌,等.技术距离、地理距离对大学-企业协同创新的影响研究[J].管理学报,2016,13(11):1665-1673.
SHI F, GAO Y, CHEN S B, et al. Technological distance, geographical distance and university-enterprise synergetic innovation[J]. Chinese Journal of Management, 2016,13(11):1665-1673.
[21] 魏红芹,周成.专利间知识流动与技术融合趋势研究[J].科技进步与对策,2018,35(22): 17-22.
WEI H Q, ZHOU CH. Trend Research for knowledge flows of patents and trends of technology fusion[J]. Science & Technology Progress and Policy, ,2018,35(22): 17-22.
[22] 刘晓燕,王晶,单晓红,等.基于多层网络的创新网络节点间技术融合机理[J].科学学研究,2019,37(6):1133-1141.
LIU X Y, WANG J, SHAN X H, et al. Technological convergence mechanisms of innovation network based on multi-level networks[J]. Studies in Science of Science, 2019,37(6):1133-1141.
[23] 郭晓林,鲁耀斌,张金隆,等.产业共性技术与区域产业集群关系研究[J].中国软科学,2006(9):111-115.
GUO X L, LU Y B, ZHANG J L, et al. Analysis on the relationship between industrial generic technology and regional industry cluster[J]. China Soft Science, 2006(9):111-115.
[24] 韩元建,陈强.共性技术扩散的影响因素分析及对策[J].中国科技论坛,2017(1):53-59.
HAN Y J, CHEN Q. Factors influencing the diffusion of generic technology and countermeasures[J]. Forum on Science and Technology in China, 2017(1):53-59.
[25] 郑彦宁,浦墨,刘志辉.基于产业创新链的产业共性技术识别基本理论探讨[J].情报理论与实践,2016,39(9):53-58.
ZHENG L N, PU M, LIU ZH H. Theoretical discussion on industrial common technology identification based on industrial innovation chain[J]. Information Studies: Theory & Application, 2016,39(9):53-58.
[26] WANG P, ROBINS G, PATTISON P, et al. Social selection models for multilevel networks[J]. Social Networks, 2016, 44(2): 346-362.
[27] WANG P, PATTISON P, ROBINS G. Exponential random graph model specifications for bipartite networks-a dependence hierarchy[J]. Social Networks, 2013, 35(2):211-222.
[28] 张换高,赵文燕,檀润华.基于专利分析的产品技术成熟度预测技术及其软件开发[J].中国机械工程,2006(8):823-827.
ZHANG H G, ZHAO W Y, TAN R H. Technique of product technology maturity mapping based on patent analysis and software design[J]. China Mechanical Engineering, 2006(8):823-827.
[29] MAHADEVAIAH G, BERMEJO I. Artificial intelligence-based clinical decision support in modern medical physics: selection, acceptance, commissioning, and quality assurance[J]. Medical Physics, 2020, 47(5): 228-235.
[1] 刘晓燕, 张淑伟, 单晓红. 技术融合的互补性与相似性研究[J]. 复杂系统与复杂性科学, 2023, 20(1): 81-87.
[2] 刘晓燕, 孙丽娜, 裘靖文, 单晓红. 基于多层网络的人工智能领域跨界技术融合[J]. 复杂系统与复杂性科学, 2022, 19(1): 45-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed