Please wait a minute...
文章检索
复杂系统与复杂性科学  2024, Vol. 21 Issue (2): 80-88    DOI: 10.13306/j.1672-3813.2024.02.011
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
具有媒体效应的分数阶SAIQR传染病模型
胡行华, 刘盈月
辽宁工程技术大学理学院,辽宁 阜新 123000
A Fractional-order SAIQR Epidemic Model with Media Effects
HU Xinghua, LIU Yingyue
College of Science, Liaoning Technical University, Fuxin 123000, China
全文: PDF(2264 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为探究Omicron新冠病毒的传播机理,预测疫情发展趋势,建立一类具有媒体效应的Caputo-conformable分数阶SAIQR新冠肺炎传染病模型。分析模型的基本再生数、平衡点、稳定性等动力学行为,利用真实数据和非线性最小二乘方法拟合模型参数,并对参数进行敏感性分析。仿真结果表明,媒体效应参数对感染人数的降低起重要作用,调节两个分数参数相比于调节单个参数使模型数值解拥有更大的自由度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡行华
刘盈月
关键词 SAIQR传染病模型Caputo-conformable分数阶媒体效应敏感性分析    
Abstract:In order to explore the transmission mechanism of Omicron COVID-19 and predict the epidemic trend, a Caputo-conformable fractional-order SAIQR epidemic model with media effects is established. The basic reproduction number, equilibrium points, stability and other dynamic behaviors of the model are analyzed. The model parameters are fitted by nonlinear least squares with real data and we performed sensitivity analysis of parameters. The numerical simulation results indicate that the media effects parameters play an important role in reducing the number of infected individuals. Adjusting two fractional parameters gives the model numerical solution greater freedom compared to adjusting a single parameter.
Key wordsSAIQR epidemic model    caputo-conformable fractional-order    media effects    sensitivity analysis
收稿日期: 2022-11-11      出版日期: 2024-07-17
ZTFLH:  O175.13  
  O29  
基金资助:教育部人文社科规划基金(21YJCZH204);辽宁省社科学规划基金(L22BGL028);辽宁省社科联规划基金(2022lslwtkt-069)
通讯作者: 刘盈月(1994-),女,辽宁锦州人,硕士研究生,主要研究方向为分数阶微分方程的稳定性及其应用。   
作者简介: 第一作者: 胡行华(1978-),男,江苏扬州人,博士,副教授,主要研究方向为动力系统理论与应用。
引用本文:   
胡行华, 刘盈月. 具有媒体效应的分数阶SAIQR传染病模型[J]. 复杂系统与复杂性科学, 2024, 21(2): 80-88.
HU Xinghua, LIU Yingyue. A Fractional-order SAIQR Epidemic Model with Media Effects[J]. Complex Systems and Complexity Science, 2024, 21(2): 80-88.
链接本文:  
https://fzkx.qdu.edu.cn/CN/10.13306/j.1672-3813.2024.02.011      或      https://fzkx.qdu.edu.cn/CN/Y2024/V21/I2/80
[1]WORLD HEALTH ORGANIZATION. Press conferences on COVID-19 [EB/OL]. [2022-11-10]. https://covid19.who.int/.
[2]KAR T K, NANDI S K, JANA S, et al. Stability and bifurcation analysis of an epidemic model with the effect of media[J]. Chaos, Solitons & Fractals, 2019, 120: 188-199.
[3]LI Y, CUI J. The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5): 2353-2365.
[4]HUO H F, YANG P, XIANG H. Stability and bifurcation for an SEIS epidemic model with the impact of media[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 490: 702-720.
[5]CHANG X, LIU M, JIN Z, et al. Studying on the impact of media coverage on the spread of COVID-19 in Hubei Province, China[J]. Mathematical Biosciences and Engineering, 2020, 17(4): 3147-3159.
[6]FENG L X, JING S L, HU S K, et al. Modelling the effects of media coverage and quarantine on the COVID-19 infections in the UK[J]. Mathematical Biosciences and Engineering, 2020, 17(4): 3618-3636.
[7]张钰倩,张太雷,侯雯珊,等.一类具有媒体效应和追踪隔离的SIQR时滞传染病模型[J].浙江大学学报(理学版), 2022, 49 (2):159-169.
ZHANG Y Q, ZHANG T L, HOU W S, et al. A delayed SIQR epidemic model with media effect and tracking quarantine[J]. Journal of Zhejiang University (Science Edition),2022, 49(2):159-169.
[8]LI T, XIAO Y. Complex dynamics of an epidemic model with saturated media coverage and recovery[J]. Nonlinear Dynamics, 2022, 107(3): 2995-3023.
[9]PODLUBNY I. Fractional differential equations[J]. Mathematics in Science and Engineering, 1999, 198: 1-340.
[10] SINGH J, KUMAR D, HAMMOUCH Z, et al. A fractional epidemiological model for computer viruses pertaining to a new fractional derivative[J]. Applied Mathematics and Computation, 2018, 316: 504-515.
[11] RAJAGOPAL K, HASANZADEH N, PARASTESH F, et al. A fractional-order model for the novel coronavirus (COVID-19) outbreak[J]. Nonlinear Dynamics, 2020, 101(1): 711-718.
[12] BOUDAOUI A, EL HADJ MOUSSA Y, HAMMOUCH Z, et al. A fractional-order model describing the dynamics of the novel coronavirus (COVID-19) with nonsingular kernel[J]. Chaos, Solitons & Fractals, 2021, 146: 110859.
[13] BALEANU D, ABADI M H, JAJARMI A, et al. A new comparative study on the general fractional model of COVID-19 with isolation and quarantine effects[J]. Alexandria Engineering Journal, 2022, 61(6): 4779-4791.
[14] SALMAN S M. Memory and media coverage effect on an HIV/AIDS epidemic model with treatment[J]. Journal of Computational and Applied Mathematics, 2021, 385: 113203.
[15] MAJI C. Impact of media coverage on a fractional-order SIR epidemic model[J]. International Journal of Modeling, Simulation, and Scientific Computing, 2022, 13(5): 2250037.
[16] KHALIL R, AL HORANI M, YOUSEF A, et al. A new definition of fractional derivative[J]. Journal of Computational and Applied Mathematics, 2014, 264: 65-70.
[17] HAMMOUCH Z, RASUL R R Q, OUAKKA A, et al. Mathematical analysis and numerical simulation of the Ebola epidemic disease in the sense of conformable derivative[J]. Chaos, Solitons & Fractals, 2022, 158: 112006.
[18] 王宇,冯育强.基于Conformable分数阶导数的COVID-19模型及其数值解[J].复杂系统与复杂性科学,2022,19(3):27-32.
WANG Y, FENG Y Q. COVID-19 model based on conformable fractional derivative and its numerical solution[J]. Complex Systems and Complexity Science, 2022,19(3):27-32.
[19] KHAN M A, GÓMEZ-AGUILAR F. Tuberculosis model with relapse via fractional conformable derivative with power law[J]. Mathematical Methods in the Applied Sciences, 2019, 42(18): 7113-7125.
[20] ABDELJAWAD T, AL-MDALLAL Q M, JARAD F. Fractional logistic models in the frame of fractional operators generated by conformable derivatives[J]. Chaos, Solitons & Fractals, 2019, 119: 94-101.
[21] QURESHI S. Effects of vaccination on measles dynamics under fractional conformable derivative with Liouville-Caputo operator[J]. The European Physical Journal Plus, 2020, 135(1): 63.
[22] JARAD F, UGˇURLU E, ABDELJAWAD T, et al. On a new class of fractional operators[J]. Advances in Difference Equations, 2017(1): 1-16.
[23] OTTAVIANO S, SENSI M, SOTTILE S. Global stability of SAIRS epidemic models[J]. Nonlinear Analysis: Real World Applications, 2022, 65: 103501.
[24] VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1/2): 29-48.
[25] KHAN M A, ATANGANA A. Mathematical modeling and analysis of COVID-19: a study of new variant Omicron[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 599: 127452.
[26] MOHSEN A A, AL-HUSSEINY H F, ZHOU X, et al. Global stability of COVID-19 model involving the quarantine strategy and media coverage effects[J]. AIMS Public Health, 2020, 7(3): 587.
[27] BERHE H W, MAKINDE O D, THEURI D M. Parameter estimation and sensitivity analysis of dysentery diarrhea epidemic model[J]. Journal of Applied Mathematics, 2019(1): 8465747.
[28] PÈREZ J E S, GÓMEZ-AGUILAR J F, BALEANU D, et al. Chaotic attractors with fractional conformable derivatives in the Liouville-Caputo sense and its dynamical behaviors[J]. Entropy, 2018, 20(5): 384.
[1] 肖人彬, 张轩宇. 社会集群行为中观点极化研究进展——以偏见同化和敌意媒体效应为中心[J]. 复杂系统与复杂性科学, 2023, 20(4): 1-9.
[2] 张轩宇, 陈曦, 肖人彬. 后真相时代基于敌意媒体效应的观点演化建模与仿真[J]. 复杂系统与复杂性科学, 2023, 20(3): 44-51.
[3] 董海, 徐德珉. 三渠道回收模式下闭环供应链混沌控制研究[J]. 复杂系统与复杂性科学, 2020, 17(1): 55-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed